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ESSAYS ON CAUSAL INFERENCE, STRUCTURAL

ESTIMATION, AND THEIR APPLICATIONS

LIANG ZHONG

Boston University, Graduate School of Arts and Sciences, 2025

Major Professor: Hiroaki Kaido, Associate Professor of Economics

ABSTRACT

This dissertation comprises three chapters that explore two interconnected ar-

eas: the development of innovative econometric tools to reduce computational

complexities and the analysis of strategic behaviors for actionable policy insights.

The first two chapters introduce new statistical approaches that link advanced

econometric methods with empirical research, while the third chapter connects

economic theory to practical applications by leveraging big data techniques.

When conducting causal inference or designing policy, researchers are often

concerned with the existence and extent of interference between units. How-

ever, complex correlations across units pose significant challenges for inference.

Chapter 1 introduces the pairwise imputation-based randomization test (PIRT),

a novel framework for testing interference in experimental settings. PIRT em-

ploys a design-based approach, combining unconditional randomization testing

with pairwise comparisons to facilitate straightforward implementation and en-

sure finite-sample validity under minimal assumptions about network structure.

To illustrate the method’s broad applicability, I apply it to a large-scale experi-

ment by Blattman et al. (2021) in Bogotá, Colombia, which evaluates the impact

of hotspot policing on crime using street segments as units of analysis. The re-
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sults indicate that increasing police patrolling time in hotspots has a significant

displacement effect on violent crime but not on property crime.

Chapter 2, coauthored with Jean-Jacques Forneron at BU, studies the General-

ized Method of Moments and the Simulated Method of Moments for estimating

structural economic models. These methods are often reported to pose optimiza-

tion challenges, largely because the corresponding objective functions are non-

convex. For smooth problems, Chapter 2 shows that convexity is not required:

under a global rank condition involving the Jacobian of the sample moments, cer-

tain algorithms are globally convergent. These include a gradient-descent and

a Gauss-Newton algorithm with appropriate choice of tuning parameters. The

results are robust to 1) non-convexity, 2) one-to-one non-linear reparameteriza-

tions, and 3) moderate misspecification. In contrast, Newton-Raphson and quasi-

Newton methods can fail to converge because of non-convexity. The condition

precludes non-global optima. Numerical and empirical examples illustrate the

condition, non-convexity, and convergence properties of different optimizers.

Chapter 3, coauthored with Daniele Paserman at BU and Angela Crema at the

University of Rochester, develops a model of discrimination that helps interpret

observed outcome differences across groups, conditional on passing a screening

test, as taste-based (employer), statistical, or customer discrimination. The frame-

work is applied to examine non-white underrepresentation in the US motion pic-

ture industry. Leveraging a novel dataset that provides racial identifiers for the

casts of 7,000 motion pictures, we show that, once a movie is produced, non-white

movies tend to have higher average revenues and a smaller variance. These find-

ings are consistent with the model if non-white movies face higher production

standards.
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CHAPTER 1

Unconditional Randomization Tests for Interference

1.1 INTRODUCTION

In social networks or spatial experiments, the outcome for one unit often depends

on the treatment assigned to another. This phenomenon is known as interference.1

Researchers often test for interference based on distance, proximity, and connec-

tion strength between units for two reasons: First, identifying the extent of interfer-

ence helps refine causal inference and model specification;2 Second, understand-

ing interference facilitates efficient resource allocation, especially when treatments

are costly (Brollo et al., 2020). For example, Bond et al. (2012) examine whether

spillovers extend beyond immediate friends. Blattman et al. (2021) test spillover

distance before assessing hotspot policing impacts in Colombia. Rajkumar et al.

(2022) analyze job mobility in relation to link intensity, distinguishing strong from

weak ties.

However, testing for interference poses econometric challenges, as large-

sample approximations can become intractable due to complex clustering pat-

terns (Kelly, 2021; Blattman et al., 2021). Even in randomized experiments, a

valid inference may require assumptions beyond treatment assignment random-

ness (Aronow, 2012; Pollmann, 2023). Consequently, recent studies (e.g., Bond

et al., 2012; Blattman et al., 2021) highlight randomization tests for detecting in-

terference. These studies typically use Fisher randomization tests (FRTs), which

1Blattman et al. (2021), p. 2027: “Many urban programs are both place-based and vulnerable
to spillovers. This includes efforts to improve traffic flow, beautify blighted streets and proper-
ties, foster community mobilization, and rezone land use. The same challenges could arise with
experiments in social and family networks.”

2See, for example, Angrist (2014), Sacerdote (2001), Cai et al. (2015), Paluck et al. (2016), Miguel
& Kremer (2004), Wang et al. (2024), and Jayachandran et al. (2017).



2

are not always valid for testing interference (Athey et al., 2018). The core issue lies

in the null hypothesis: FRTs test the sharp null hypothesis of no effect and rely on

imputability, meaning all potential outcomes are assumed known under the null

across all assignments (Rosenbaum, 2007; Hudgens & Halloran, 2008). In network

settings, this implies potential outcomes remain constant irrespective of which

units are treated, excluding both direct effects and interference under the sharp

null. Thus, rejecting the sharp null could reflect either nonzero treatment effects or

interference, without distinguishing between them.

In this chapter, I introduce the pairwise imputation-based randomization test

(PIRT), an unconditional framework for detecting and analyzing interference in

experimental settings. PIRT adopts a design-based approach, treating potential

outcomes as fixed and using random treatment assignment as the sole source of

uncertainty (Abadie et al., 2020, 2022).3 In the main analysis, I focus on a hypoth-

esis comparing the potential outcomes of units under different treatment assign-

ments when they lie beyond a distance threshold ϵs from treated units. The method

reassigns treatments while keeping outcomes fixed, calculates carefully designed

test statistics, and constructs a novel p-value. A sufficiently small p-value signals

evidence against the null hypothesis. PIRT requires minimal assumptions about

network structure–making it suitable for dense networks–and relies solely on ran-

dom assignment, ensuring validity without further assumptions.

More generally, I define partially sharp null hypotheses in which only a subset

of potential outcomes is assumed known across treatment assignments (Zhang &

Zhao, 2023). Testing for interference arises as a special case, requiring isolation

of direct treatment effects while assessing whether a unit’s outcome depends on

3As Blattman et al. (2021) note, a design-based approach and randomization inference may be
particularly suitable in network contexts where spillover effects are unknown.
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others’ treatment statuses. Overall, PIRT is a non-parametric, finite-sample valid,

and easily implementable method for any partially sharp null hypothesis.4

Testing partially sharp null hypotheses with PIRT involves addressing two

technical challenges. First, only a subset of potential outcomes is “imputable,”

meaning their values can be inferred from observed data under the partially sharp

null hypothesis. For example, under a partially sharp null hypothesis of no peer

effects on non-treated units in a social network, outcomes can only be imputed for

non-treated units; outcomes for treated units remain unknown. Second, the set of

units with imputable outcomes changes with each treatment assignment, as the

non-treated units vary across assignments. Together, these challenges complicate

the direct application of traditional randomization inference methods, highlight-

ing the need for specialized approaches.

To address the first challenge, I propose a class of statistics termed pairwise

imputable statistics, each defined with two treatment assignment arguments. The

first assignment identifies the imputable units, while the second determines how

these units are grouped or compared. These statistics resemble conventional test

statistics defined by Imbens & Rubin (2015) but are restricted to imputable units

as specified by the partially sharp null under both assignments. Despite this re-

striction, pairwise imputable statistics accommodate various commonly used test

statistics. For example, a difference-in-means estimator might compare imputable

individuals who have treated friends to those who do not. Here, the first assign-

ment determines the imputable individuals included in the calculation, while the

second assignment defines the groupings, similar to conventional test statistics.

To tackle the second challenge, I draw on recent advances in selective infer-

4It is finite-sample exact, meaning the probability of a false rejection in finite samples does not
exceed the user-prescribed nominal rate (Pouliot, 2024).
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ence (Wen et al., 2023; Guan, 2023) and construct PIRT p-values via pairwise com-

parisons of two pairwise imputable statistics. The first statistic uses the random-

ized assignment to select imputable units, while the observed assignment defines

groupings and comparisons. Conversely, the second statistic selects imputable

units based on the observed assignment, with groupings and comparisons deter-

mined by the randomized assignment. The validity of this procedure relies on the

symmetry of these pairwise comparisons, analogous to the conformal lemma of

Guan (2023).

To illustrate PIRT’s applicability, I apply it to a large-scale experiment by

Blattman et al. (2021) evaluating a policing strategy that concentrated resources

on high-crime hotspots in Bogotá, Colombia, using street segments as units. I

assess the policy’s overall effectiveness and examine criminal behavior and in-

centives by testing for interference–such as crime displacement or deterrence–in

nearby neighborhoods.5 The authors report significant displacement effects of in-

creased police patrol on property crime but not on violent crime. However, using

PIRT to specifically test against no displacement, I find, contrary to Blattman et al.

(2021), a marginally significant displacement effect on violent crime at the 10%

level and an insignificant effect on property crime.6 This result could reshape our

understanding of criminal behavior and inform welfare analysis, especially if more

severe violent crime warrants stricter interventions.

A simulation study calibrated to this dataset further demonstrates the strong

empirical properties of PIRT compared to existing methods. In particular, I test for

5This assumes that interactions pass through neighboring units, resulting in spillover effects.
6I also propose a multiple hypothesis testing adjustment that ensures control of the family-

wise error rate (FWER) when defining the “neighborhood” of interference. This adjustment is
particularly useful when spillover effects are positive, as it helps policymakers design cost-effective
interventions. Conversely, if spillover effects are negative, identifying their range aids in evaluating
the overall effectiveness of the policy.
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displacement effects, where interference causes outcomes to “spill over” to neigh-

boring units. PIRT at the α rejection level successfully controls type I error rates,

demonstrating robustness under worst-case scenarios. In contrast, classical FRT

may over-reject under partially sharp null hypotheses. Regarding power, PIRT

at the α rejection level outperforms competing alternative methods, which is espe-

cially valuable in network analysis, where data collection is costly and interference

effects are subtle (Taylor & Eckles, 2018; Breza et al., 2020). However, there exists

a trade-off between ease of implementation and conservatism under the null, as

PIRT may exhibit conservatism in some cases.

Literature Review This chapter contributes to three strands of literature. First,

it advances network analysis. Since the seminal work of Manski (1993), several

studies have adopted model-based approaches relying on parametric assumptions

(Sacerdote, 2001; Bowers et al., 2013; Toulis & Kao, 2013; Graham, 2017; de Paula

et al., 2018). These papers typically impose specific structures on networks and

must carefully handle the high dimensionality of network interactions. In con-

trast, my method is non-parametric and leverages the null hypothesis to reduce

dimensionality.

Second, this chapter contributes to design-based causal inference methods un-

der interference. Two main frameworks for causal inference under interference

are the Fisherian and Neymanian perspectives (Li et al., 2018). The Neymanian

approach emphasizes randomization-based unbiased estimation and variance cal-

culations (Hudgens & Halloran, 2008; Aronow & Samii, 2017; Pollmann, 2023),

typically using asymptotic normal approximations and often requiring sparse net-

works or local interference assumptions.7

7Also see Basse & Airoldi (2018), Viviano (2022), Wang et al. (2023), Vazquez-Bare (2023), Leung
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In contrast, this chapter adopts the Fisherian perspective, focusing on detect-

ing causal effects using finite-sample valid, randomization-based tests (Dufour &

Khalaf, 2003; Lehmann & Romano, 2005; Rosenbaum, 2020). Acknowledging the

limitations of FRTs for testing interference, prior literature has introduced condi-

tional randomization tests (CRTs), which restrict testing to a conditioning event–a

subset of units and assignments for which the null hypothesis is sharp.8 However,

many CRT methods are tailored to specific scenarios, such as clustered interference

(Basse et al., 2019, 2024), limiting their generalizability. Additionally, designing

conditioning events that can detect interference is challenging and often leads to

power loss (Puelz et al., 2021). Furthermore, implementing CRTs under general

interference can be computationally demanding, requiring significant resources.

This chapter builds on this foundation by introducing an alternative approach that

applies broadly, is straightforward to implement, and remains valid even when

designing conditioning events is difficult. Confidence intervals for specific causal

parameters can then be constructed by inverting these tests.9

Finally, this chapter contributes to the literature by extending randomization

testing beyond sharp null hypotheses. While the primary focus is on partially

sharp null hypotheses defined by distance measures, the principles of PIRT seem

generalizable beyond network contexts. Since Neyman et al. (2018) acknowledged

that FRTs are limited to testing sharp null hypotheses, researchers have developed

various strategies to address weak nulls (Ritzwoller et al., 2025). For example,

(2020), Leung (2022), and Shirani & Bayati (2024).
8See, for example, Aronow (2012), Athey et al. (2018), Basse et al. (2019), Puelz et al. (2021),

Zhang & Zhao (2021), Basse et al. (2024), and Hoshino & Yanagi (2023).
9Furthermore, randomization-based methods can be integrated with model-based frameworks,

such as the linear-in-means model (Manski, 1993), to increase power or broaden applicability be-
yond randomized experiments while preserving test validity (Wu & Ding, 2021; Basse et al., 2024;
Borusyak & Hull, 2023).
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Ding et al. (2016), Li et al. (2016), and Zhao & Ding (2020) examine randomization

tests for the null hypothesis of no average treatment effect, while Caughey et al.

(2023) validate these tests under bounded null hypotheses. Zhang & Zhao (2021)

construct CRTs for partial sharp nulls, applying an approach similar to Athey et al.

(2018) and Puelz et al. (2021) in time-staggered adoption designs. To my knowl-

edge, PIRT is the first method addressing partially sharp null hypotheses through

unconditional randomization testing.

The rest of the chapter is structured as follows. Section 1.2 introduces the gen-

eral setup and establishes all necessary notation. Section 1.3 presents the PIRT

procedure, which includes the pairwise imputable statistics and the p-value based

on pairwise comparisons. Section 1.4 applies the method to a large-scale policing

experiment in Bogotá, Colombia, with Section 1.4.1 reporting the results of a Monte

Carlo experiment calibrated to this setting. Finally, Section 1.5 concludes. The ap-

pendix provides additional empirical and theoretical results as well as proofs.

1.2 SETUP AND NULL HYPOTHESIS OF INTEREST

Consider N units indexed by i ∈ {1, 2, . . . , N}, connected through an undirected

network observed by the researcher. The researcher is interested in understanding

the extent of interference based on factors such as distance, neighboring units, and

connection strength, which are captured by an N × N proximity matrix G. The

(i, j)-th component Gi,j ≥ 0 represents a “distance measure" between units i and

j, which can be either a continuous or discrete variable. I normalize Gi,i = 0 for

all i = 1, 2, . . . , N , and assume Gi,j > 0 for all i ̸= j. This distance measure is

context-specific:10

10Researchers can also define distance in product space, particularly in the context of firms sell-
ing differentiated products. Here, units represent products, and Gi,j can be the Euclidean dis-
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Example 1 (Spatial distance). In settings where units interact locally through shared

space, such as street segments in a city (Blattman et al., 2021), Gi,j represents the spatial

distance between units i and j.

Example 2 (Network distance). In social network settings, such as friendships on Face-

book (Bond et al., 2012), Gi,j measures the distance between units i and j, where Gi,j = 1

for friends, Gi,j = 2 for friends of friends, and Gi,j = ∞ if i and j are not connected. This

framework accommodates disconnected networks and captures partial interference, such as

cluster-level interference (Sobel, 2006; Basse et al., 2019).

Example 3 (Link intensity). Researchers may observe not only whether two units are

linked but also the intensity of the link inti,j , such as frequency of interaction or vol-

ume of email correspondence (Goldenberg et al., 2009; Bond et al., 2012; Rajkumar et al.,

2022). Building on the classic study by Granovetter (1973), one might examine how

interference differs across weak and strong ties, defined by this intensity measure. Let

¯int = maxi,j∈{1,...,N} inti,j , and define Gi,j = ¯int− inti,j . In this way, an increase in Gi,j

implies a weaker connection, analogous to Examples 1 and 2.

In this chapter, I focus on experimental settings where treatment assignment is

random and follows a known probability distribution P , where P (d) = Pr(D = d)

is the probability that the treatment assignment D equals d. Let X represent the

collected pre-treatment characteristics, such as age and gender, which can be used

to control for unit heterogeneity. However, I do not attempt to evaluate their direct

effects on the outcome. The probability distribution may or may not depend on

covariates X . In cases of complete or cluster randomization, it does not depend on

X , while in stratified or matched-pair designs, it does.

tance between them in a multi-dimensional space of product characteristics, as in Pollmann (2023).
This measure is useful for defining market boundaries, such as when a merger authority assesses
whether two products belong to the same relevant market.
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I adopt the potential outcomes framework with a binary treatment assignment

vector D = (D1, . . . , DN) ∼ P , where D ∈ {0, 1}N and Di ∈ {0, 1} denotes unit

i’s treatment. Let Y (d) = (Y1(d), . . . , YN(d)) ∈ RN be the potential outcomes

under treatment assignment d, where the potential outcome of unit i is Yi(d) =

Yi(d1, . . . , dN). This allows unit i’s potential outcome to depend on the treatment

assignment of unit j, violating the classic Stable Unit Treatment Value Assumption

(SUTVA) proposed by Cox (1958), and accommodating cases where spatial or net-

work interference exists. However, the distance measure between treatment and

individuals is unaffected by the treatment.

Throughout the chapter, I assume that the following are observed: 1) the real-

ized vector of treatments for all units, denoted byDobs; 2) the realized outcomes for

all units, denoted by Y obs ≡ Y (Dobs) = (Y1(D
obs), . . . , YN(D

obs)); 3) the proximity

matrix G; 4) the covariates X ; and 5) the probability distribution of the treatment

assignment P . I adopt a design-based inference approach, where D is treated as

random, while G, X , P , and the unknown potential outcome schedule Y (·) are

considered fixed. For simplicity in notation, these elements will not be treated

as arguments of functions in the rest of the chapter. To illustrate these notations,

consider the following running example.

Running Example. Consider four street segments, where two segments are ad-

jacent if they are connected, as shown in Figure 1.1. Units i1 and i2 are connected,

forming one area, while units i3 and i4 are connected, forming another. For sim-

plicity, the distance between units in the same area is set to 1. In practice, the

distance between units in different areas could be up to infinity but for the sake of

this example, assume it is 2.

Suppose the outcome of interest, Y , is the total number of crimes over a year,
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Figure 1.1: Example Network Structure and Distance Matrix

i1 i2

i3i4

(a) Network Structure

G =


0 1 2 2

1 0 2 2

2 2 0 1

2 2 1 0


(b) Distance Matrix

Notes: Panel (a) presents the network structure of four units, while panel (b)
displays the corresponding distance matrix.

and a random treatment D is applied to increase policing in one unit. Assume

the treatment is randomly assigned with P (d) = 1/4 for each possible assignment.

Let the observed treatment be Dobs = (1, 0, 0, 0) and the observed outcomes Y obs =

(2, 4, 3, 1).

Table 1.1 illustrates the potential outcome schedule under the design-based

framework for all assignments that have positive probability. The first row cor-

responds to the observed dataset. Although all potential outcomes are fixed val-

ues, only the outcomes under the observed treatment are known. In general, since

potential outcomes can depend on assignments across all units, there could theo-

retically be up to 2N potential outcomes.

1.2.1 Partially Sharp Null Hypothesis

The term "partially sharp null" was first introduced by Zhang & Zhao (2023), and

I begin by providing a formal definition of the partially sharp null hypothesis.

Definition 1 (Partially sharp null hypothesis). A partially sharp null hypothesis holds
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Table 1.1: Potential Outcome Schedule in the Example

Assignment D Potential Outcome Yi
i1 i2 i3 i4

(1, 0, 0, 0) 2 4 3 2
(0, 1, 0, 0) ? ? ? ?
(0, 0, 1, 0) ? ? ? ?
(0, 0, 0, 1) ? ? ? ?

Notes: The table shows the potential outcome schedule under the design-based
view. The first row represents the observed assignment Dobs, while potential out-
comes denoted by ? are unobserved values.

if there exists a collection of subsets {Di}Ni=1, where each Di ⊂ {0, 1}N , such that

H0 : Yi(d) = Yi(d
′) for all i ∈ {1, . . . , N}, and any d, d′ ∈ Di.

The partially sharp null hypothesis reduces dimensionality by restricting po-

tential outcomes only across certain subsets of assignments. The set Di can vary

across units and is always a strict subset of {0, 1}N , and thus offers greater flexi-

bility than the sharp null hypothesis, which corresponds to the case where Di =

{0, 1}N . For instance, researchers can specify Di based on an exposure mapping–a

function linking treatment assignments to exposure levels–to test outcome con-

stancy within each exposure level, especially when concerned about potential mis-

specification (Hoshino & Yanagi, 2023).

More generally, researchers can define alternative forms of Di that reflect spe-

cific hypotheses and research contexts, including cases where the null hypothesis

is expressed as the intersection of multiple Di sets (Owusu, 2023; Puelz et al., 2021).

Appendix A.2 discusses extensions of the current framework to these more general

and complex hypotheses. Although the method introduced in this chapter is ap-

plicable to any partially sharp null hypothesis, I specifically focus on cases where
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Di is defined based on a distance measure.

Definition 2 (Distance interval assignment set). For a unit i ∈ {1, . . . , N} and a given

distance ϵs, the distance interval assignment set is defined as

Di(ϵs) ≡

{
d ∈ {0, 1}N :

N∑
j=1

1{Gi,j ≤ ϵs}dj = 0

}
.

When d ∈ Di(ϵs), unit i is said to be in the distance interval (ϵs,∞).

This definition involves two key concepts: Di(ϵs) and the interval (ϵs,∞), both

of which are specific to unit i. The distance interval assignment set Di(ϵs) maps

a distance ϵs to a set of treatment assignments where unit i is at least a distance

ϵs away from any treated units. For any ϵs ≥ 0, since Gi,i = 0, it follows that

1{Gi,i ≤ ϵs} = 1, implying that unit i is untreated (di = 0) for any assignment

d ∈ Di(ϵs). Specifically, when ϵs = 0, all Gi,j for i ̸= j are positive, which ensures

that 1{Gi,j ≤ ϵs} = 0. As a result, there is no restriction on the treatment status of

other units dj , and Di(0) includes all treatment assignments d where di = 0, while

allowing others to be treated.11

The distance interval assignment set Di(a)/Di(b) corresponds to treatment as-

signments where unit i is within the distance interval (a, b]. For any treatment

assignment d, the set {i : d ∈ Di(a)/Di(b)} contains all units that fall within the

distance interval (a, b] relative to treated units.

Using the concept of distance interval assignment sets, I now define the par-

tially sharp null hypothesis of interference based on distance.

Definition 3 (Partially sharp null hypothesis of interference on distance ϵs ≥ 0).

11For any ϵs < 0, since Gi,j ≥ 0 for all i, j, we have 1{Gi,j ≤ ϵs} = 0, meaning that Di(ϵs) =
{0, 1}N , where all treatment assignments are included.
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The partially sharp null hypothesis of interference on distance ϵs ≥ 0 is defined as

Hϵs
0 : Yi(d) = Yi(d

′) for all i ∈ {1, . . . , N}, and any d, d′ ∈ Di(ϵs).

Under Di(ϵs), all units within ϵs distance of unit i, as well as unit i itself, are not

treated. Hence, this hypothesis asserts that no interference occurs beyond distance

ϵs, meaning the potential outcomes for unit i remain unchanged for any treatment

assignment where unit i is at least a distance ϵs away from all treated units. Under

this null hypothesis, the potential outcomes for unit i can be imputed for treatment

assignment vectors that satisfy this distance condition, allowing for a partial im-

putation of outcomes. The interpretation of distance here is context-specific and

depends on the nature of the interference in the particular application.

Example 1 (Spatial distance continued). In a setting where units represent street seg-

ments, for a given spatial distance ϵs (e.g., 500 meters), Di(ϵs) consists of all treatment as-

signments where unit i is at least 500 meters away from any treated street segments. The

partially sharp null hypothesis Hϵs
0 tests whether spillover effects occur on an untreated

unit located 500 meters away from any treated units.

Example 2 (Network distance continued). Consider two schools, each with 100 stu-

dents, where the goal is to test for cluster interference within schools. We assume that stu-

dents within the same school are 100 units apart from each other and are infinitely distant

from students in the other school. Setting ϵs = 0, we test for interference within schools.

Cluster interference is present if students’ outcomes are affected by treatment assignments

in their own school but not in the other school.12

Example 3 (Link intensity continued). Consider a scenario where units represent indi-

12Setting ϵs = 101 would test for interference across schools but such a test may lack power in
practice, as noted by Puelz et al. (2021).



14

viduals with cell phones, and the intensity of their connection is measured by the number

of text messages exchanged, with a maximum of 50 messages per week. We define the

“distance" between two individuals as 50 minus the number of messages exchanged. For

ϵs = 40, Di(ϵs) represents all treatment assignments where unit i has exchanged fewer

than 10 messages with any treated units. The partially sharp null hypothesis Hϵs
0 tests

whether interference occurs for an untreated unit that has exchanged fewer than 10 mes-

sages with treated units.

The null hypothesis defined in Definition 3 is useful for assessing the existence

or extent of interference within a network, as researchers are often interested in

whether interference occurs beyond a certain distance ϵs. If ϵs > 0, researchers can

use this approach to identify the neighborhood of interference or to find a suitable

comparison group for subsequent estimation.

Comparison to the Traditional t-Test. The traditional t-test compares units at

varying distances from treated units but faces two key challenges: First, units’ dis-

tances to treated units are not random even under random assignment, potentially

causing bias without additional assumptions (Aronow, 2012; Pollmann, 2023); Sec-

ond, large-sample approximations become difficult due to complex clustering pat-

terns (Kelly, 2021; Blattman et al., 2021). In contrast, the partially sharp null hy-

pothesis from Definition 3 directly evaluates the same unit’s potential outcomes at

distances greater than ϵs from treated units. Its advantage is that it requires only

random treatment assignment and avoids biases from comparing outcomes across

potentially non-comparable units.

If ϵs = 0, we test the partially sharp null hypothesis of no interference as Di(0)

consists of all treatment assignments where di = 0, meaning the unit is untreated.

Treatment assignments where di = 1 are excluded, ensuring that the hypothesis
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solely focuses on spillover effects. In contrast, the traditional sharp null hypothe-

sis includes potential outcomes where di = 1, which also involves direct treatment

effects. We can simplify H0
0 further, as illustrated in the following running exam-

ple.

Running Example Continued. Suppose researchers want to test for the existence

of spillover effects using the partially sharp null hypothesis in Definition 3 with

ϵs = 0:

H0
0 : Yi(d) = Yi(d

′) for all i ∈ {1, . . . , N},

and any d, d′ ∈ {0, 1}N such that di = d′i = 0.

Throughout the chapter, I use the above H0
0 for illustration in the running ex-

ample. This hypothesis implies that the potential outcome for any untreated unit

i remains unchanged regardless of the treatment assignments of other units. The

potential outcome schedule under H0
0 is shown in Table 1.2.

As shown in Table 1.2, the null hypothesis H0
0 allows us to impute many of

the previously missing potential outcomes. For example, since we observe the

outcome when unit i2 is not treated, we can impute other outcomes as long as unit

i2 remains untreated. Consequently, the outcome for i2 when either unit i3 or i4 is

treated is also 4.

1.2.2 Two Technical Challenges for Randomization Tests

As discussed in Zhang & Zhao (2023), the partially sharp null hypothesis implies

that only a subset of potential outcomes remain unknown. Although this reduces

the number of missing outcomes, technical challenges persist. As illustrated by
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Table 1.2: Potential Outcome Schedule Under Partially Sharp Null
H0

0

Assignment D Potential Outcome Yi
i1 i2 i3 i4

(1, 0, 0, 0) 2 4 3 2
(0, 1, 0, 0) ? ? 3 2
(0, 0, 1, 0) ? 4 ? 2
(0, 0, 0, 1) ? 4 3 ?

Notes: The table shows the potential outcome schedule with the partially sharp
null hypothesis under Definition 3 for the toy example. Assignment D includes
all potential assignments, with the first row representing the observed assignment
Dobs. Potential outcomes marked in ? are non-imputable values under the partially
sharp null.

Table 1.2, the potential outcome schedule under H0
0 still contains missing values,

complicating the use of traditional methods.

Traditional Test Statistics. In practice, researchers often specify a distance ϵc such

that units farther than ϵc from treated units are assumed to experience no interfer-

ence. For instance, in a spatial setting, we might assume that no interference occurs

for units more than ϵc = 1, 000 meters away. For cluster interference, we might

assume that no spillover occurs once ϵc exceeds the maximum distance within a

cluster, indicating no interference across clusters.

A natural test statistic compares units within the distance interval (ϵs, ϵc] to the

treated group, while using units in the distance interval (ϵc,∞) as a pure control

group. The idea behind ϵc is to identify a threshold beyond which the influence

of the treatment is negligible, allowing researchers to separate units likely to be

impacted by interference from those that serve as clean controls. If the researcher

has no prior value for ϵc, Section A.5.2 proposes a sequential testing procedure to

help select an appropriate ϵc. Even if ϵc is misspecified and does not provide a

clean control group, the proposed testing procedure remains valid, though it may
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reduce test power (Basse et al., 2024).

For example, consider the difference in means with control distance ϵc:

T (Y (Dobs), D) = Ȳ (Dobs){i:D∈Di(ϵs)/Di(ϵc)}︸ ︷︷ ︸
Mean of neighbor

− Ȳ (Dobs){i:D∈Di(ϵc)}︸ ︷︷ ︸
Mean of control

,

where for sets Ai ⊂ {0, 1}N , we have

Ȳ (Dobs){i:D∈Ai} =
N∑
i=1

1{D ∈ Ai}Yi(Dobs)/
N∑
i=1

1{D ∈ Ai},

In particular, Ai = Di(ϵs)/Di(ϵc) corresponds to the distance interval (ϵs, ϵc], while

Ai = Di(ϵc) corresponds to (ϵc, ∞). The difference-in-means estimator is widely

used in the literature(see, e.g., Basse et al., 2019; Puelz et al., 2021).

Running Example Continued. For the rest of the discussion in the running ex-

ample, I would use ϵc = 1. Therefore, there are two relevant distance intervals for

the difference-in-means estimator: (0, 1] and (1,∞). Figure 1.2 shows how these

intervals change with different treatment assignments.

Figure 1.2: Example Network Structure with Treated, Neighbor, and
Control Units

i1 i2

i3i4

(a) Treated Unit: i1

i1 i2

i3i4

(b) Treated Unit: i2

i1 i2

i3i4

(c) Treated Unit: i3

i1 i2

i3i4

(d) Treated Unit: i4

Notes: Units with red circles are treated, units in blue are neighbors in the interval
(0, 1], and units in brown are control units in the interval (1,∞).

Applying traditional test statistics, such as the difference-in-means estimator,
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can be problematic when some potential outcomes remain unknown under H0
0 .

Although the first row can be computed as 4 − (3 + 2)/2 = 1.5, Table 1.3 shows

that test statistics under non-observed treatment assignments still involve missing

values. This occurs because randomization requires knowledge of all Yi(d) values

for the relevant assignment. This renders FRT inapplicable under the partially

sharp null hypothesis and highlights two specific challenges that persist in more

general settings:

Table 1.3: Traditional Test Statistics Under Partially Sharp Null H0
0

Assignment D Potential Outcome Yi T (Y (Dobs), D)
i1 i2 i3 i4

(1, 0, 0, 0) 2 4 3 2 1.5
(0, 1, 0, 0) ? ? 3 2 ?
(0, 0, 1, 0) ? 4 ? 2 ?
(0, 0, 0, 1) ? 4 3 ? ?

Notes: The table shows the potential outcome schedule under the partially sharp
null hypothesis for the example. Assignment D includes all potential assignments,
with the first row representing the observed assignment Dobs. Potential outcomes
marked in red question marks are non-imputable under the partially sharp null.

First, only a subset of potential outcomes can be observed or imputed. For

example, under H0
0 , if unit i2 is treated, the hypothesis provides no information

about the potential outcomes of unit i1, leaving the potential outcomes for both i1

and i2 missing.

Second, the set of units with imputable outcomes depends on the treatment as-

signment. For instance, if unit i3 is treated instead, the missing values now belong

to i1 and i3, differing from other assignments.

The remainder of the chapter focuses on addressing these two technical chal-

lenges.
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1.3 PAIRWISE IMPUTATION-BASED RANDOMIZATION TEST (PIRT)

For simplicity, I initially fix ϵs and ϵc, deferring discussion of their selection until the

end of this section. For each treatment assignment d, I focus on the units imputable

under Hϵs
0 given the observed information.

Definition 4 (Imputable units). Given a treatment assignment d ∈ {0, 1}N and a par-

tially sharp null hypothesis Hϵs
0 ,

I(d) ≡ {i ∈ {1, . . . , N} : d ∈ Di(ϵs)} ⊆ {1, . . . , N}

is called the set of imputable units under treatment assignment d.

The set of imputable units is the subset of units for which imputation is pos-

sible, corresponding to those in the distance interval (ϵs,∞) under the partially

sharp null hypothesis Hϵs
0 . It shares a similar spirit with the "super focal units"

in Owusu (2023). Specifically, given the observed treatment Dobs, the set I(Dobs)

includes all units with an imputable observed outcome. Units outside this set pro-

vide no additional information because their observed outcomes cannot be im-

puted to other treatment assignments under the partially sharp null. For example,

if ϵs = 0, then Di(ϵs) includes all assignments d where di = 0, meaning I(Dobs)

consists of all units not treated under Dobs.

Running Example Continued. Under H0
0 , the imputable units for a treatment

assignment d can be expressed as I(d) ≡ {i ∈ {1, . . . , N} : di = 0}. That is, under

the null hypothesis of no interference, all non-treated units are imputable. For

example, as shown in Figure 1.3, when unit i1 is treated, units i2 to i4 belong to the

imputable set, and when unit i2 is treated, units i1, i3, and i4 are imputable. It is
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worth noting that this is a special case where all untreated units are imputable. In

more general settings, this depends on the ϵs in the null hypothesis.

Figure 1.3: Example Network Structure with Imputable Units

i1 i2

i3i4

(a) Treated Unit: i1

i1 i2

i3i4

(b) Treated Unit: i2

i1 i2

i3i4

(c) Treated Unit: i3

i1 i2

i3i4

(d) Treated Unit: i4

Notes: Treated units are marked with red rectangles, while imputable units are
shown in black.

As shown in Figure 1.3, generally, I(d) ̸= I(d′) for different assignments d and

d′. For example, when testing for spillover effects among friends, the set of friends

affected will change with different treatment assignments due to varying social

connections.

In practice, I(Dobs) could sometimes be empty, depending on the network struc-

ture and the specific partially sharp null hypothesis. If no units meet the required

criteria (i.e., I(Dobs) is empty), one approach is to reject the null hypothesis α per-

cent of the time, in line with the desired significance level. This ensures control of

the test’s size, even in cases where the imputable set is empty. However, to achieve

power in such cases, additional data or a different study design may be necessary.

See Appendix A.4 for further discussion.

The set of imputable units can also be defined under the sharp null hypothesis,

though in this case, I(d) = {1, . . . , N} for any assignment d, meaning all units

are imputable under the sharp null. Therefore, there has been less focus on the

imputable units set in the randomization tests literature. To help define the test

statistics later, I further define the following.
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Definition 5 (Imputable outcome vector). For any treatment assignment d ∈ {0, 1}N

and a partially sharp null hypothesis Hϵs
0 ,

YI(d) ≡ {Yi}i∈I(d)

is called the imputable outcome vector for the treatment assignment d, with each component

representing the potential outcome for the units in I(d). When the value of Y is determined

by an alternative treatment assignment d′, we denote

YI(d)(d
′) ≡ {Yi(d′)}i∈I(d)

as the imputable outcome vector for d, with each component representing the potential

outcome under the alternative treatment assignment d′ for the units in I(d).

Two factors influence the imputable outcome vector. First, the value of the

potential outcome depends on d′. For example, when d′ = Dobs, Y (d′) = Y obs is

the observed outcome in the dataset. Second, the set of units included in the vec-

tor is determined by assignment d. For the potential outcome vector Y (d′) under

treatment assignment d′, YI(d)(d′) is a subvector of it. For different assignments

d, it leads to different sets of units in the imputable outcome vector when testing

the partially sharp null hypothesis. In contrast, under the sharp null hypothesis,

I(d) = {1, . . . , N}, so YI(d)(d′) = Y (d′).

1.3.1 Pairwise Imputable Statistics

To address the first technical challenge, I construct a valid test statistic that ac-

counts for missing potential outcomes. The definitions above provide the founda-

tion for formally defining the core idea behind the test statistics.
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Definition 6 (Pairwise Imputable Statistic). Let T : RN × {0, 1}N × {0, 1}N −→

R ∪ {∞} be a measurable function. We say that T is a pairwise imputable statistic if,

for any d, d′ ∈ {0, 1}N , the following holds:

whenever Yi = Y ′
i for all i ∈ I(d) ∩ I(d′), then T

(
YI(d), d

′) = T
(
Y ′
I(d), d

′).
In words, T depends only on the portion of Y (or Y ′) in the intersection I(d) ∩ I(d′).

The set I(d) ∩ I(d′) in Definition 6 is similar to the set H in Definition 1 of

Zhang & Zhao (2023). Intuitively, it excludes units that are not imputable under

the partially sharp null hypothesis in the test statistics. Under the sharp null hy-

pothesis, where all units are imputable regardless of the treatment assignment d,

I(d) ∩ I(d′) = {1, . . . , N} for any d and d′, and all formulas reduce to the classical

form as defined in Imbens & Rubin (2015).

At first glance, the pairwise imputable statistic may seem to restrict the form

of the test statistics but it is actually general enough to accommodate commonly

used test statistics. For instance, the classic difference in means can be written as

T (YI(Dobs)(D
obs), D) = ȲI(Dobs)(D

obs){i:D∈Di(ϵs)/Di(ϵc)}︸ ︷︷ ︸
Mean of imputable neighbor

− ȲI(Dobs)(D
obs){i:D∈Di(ϵc)}︸ ︷︷ ︸

Mean of imputable control

.

where for sets Ai ⊂ {0, 1}N , we have

ȲI(Dobs)(D
obs){i:D∈Ai} =

∑
i∈I(Dobs)

1{D ∈ Ai}Yi(Dobs)/
∑

i∈I(Dobs)

1{D ∈ Ai},

In particular, Ai = Di(ϵs)/Di(ϵc) corresponds to units in the distance interval

(ϵs, ϵc], while Ai = Di(ϵc) corresponds to units in the distance interval (ϵc, ∞).

This formula coincides with the classic difference in means when I(Dobs) =
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{1, . . . , N}, and whether unit i lies in (ϵs, ϵc] or (ϵc,∞) depends on D. In practice,

one of these mean values may be undefined if no unit in I(Dobs) falls into one of

those intervals. In that situation, I set T = max(Y obs)−min(Y obs) to ensure the test

remains valid but conservative.13 However, this issue did not arise in my empirical

application and is generally less concerning for bipartite experiments when ϵs is

moderate. For further discussion, see Appendix A.4.14

Running Example Continued. Consider the test statistic

T (YI(Dobs)(D
obs), D) = ȲI(Dobs)(D

obs){i:D∈Di(0)/Di(1)} − ȲI(Dobs)(D
obs){i:D∈Di(1)}.

Table 1.4 presents the corresponding values for the first and second terms of

the test statistic, while Figure 1.4 provides a visual representation of how we de-

termine the imputable neighbor units and imputable control units.

Table 1.4: Constructing a Pairwise Imputable Statistic

Assignment D Potential Outcome Yi ȲI(Dobs)(D
obs) T (YI(Dobs)(D

obs), D)

i1 i2 i3 i4 {i : D ∈ Di(0)/Di(1)} {i : D ∈ Di(1)}

(1, 0, 0, 0) 2 4 3 2 4 2.5 1.5
(0, 1, 0, 0) ? ? 3 2 ? 2.5 2
(0, 0, 1, 0) ? 4 ? 2 2 4 -2
(0, 0, 0, 1) ? 4 3 ? 3 4 -1

Notes: Assignment D includes all potential assignments, with the first row corre-
sponding to the observed assignment Dobs. Potential Outcome Yi is the potential
outcome of each unit under the null H0

0 , with red question marks representing
missing values. Unit i1 does not belong to set I(Dobs), so the entire column is
marked in red. ȲI(Dobs)(D

obs) with {i : D ∈ Di(0)/Di(1)} is the mean potential out-
come for units in the distance interval (0, 1], marked in blue. ȲI(Dobs)(D

obs) with
{i : D ∈ Di(1)} is the mean potential outcome for units in the distance interval
(1,∞). T = max(Y obs) −min(Y obs), marked in red when one of the mean values
is undefined.

13Any number greater than the observed statistic would also suffice.
14To increase test power, one could combine this approach with conditional randomization test-

ing, which trims treatment assignments to avoid undefined cases (Zhang & Zhao, 2023).
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As illustrated in Figure 1.4,Dobs refers to the scenario where unit i1 is treated, so

the set of imputable units remains the same across different potential assignments

D. However, the potential assignment D can change, altering which units belong

to the neighborhood set and the control set. When D = Dobs and unit i1 is treated,

the first term ȲI(Dobs)(D
obs){i:D∈Di(0)/Di(1)} corresponds to the outcome of i2, while

the second term ȲI(Dobs)(D
obs){i:D∈Di(1)} is the mean outcome of i3 and i4. When

unit i2 is treated, there are no imputable units in the neighborhood set, so I define

T = max(Y obs)−min(Y obs) = 2 to ensure the test’s validity.

The proposed test statistic satisfies Definition 6 because only units in the inter-

section I(Dobs) ∩ I(D) are used to construct it. For example, if Dobs has i1 treated

and D has i3 treated, then I(Dobs) = {i2, i3, i4}, and I(D) = {i1, i2, i4}. As a result,

their intersection is {i2, i4}. As shown in the third row of Table 1.4, the test statistic

only depends on the outcomes of units i2 and i4.

Figure 1.4: Imputable Neighbor and Control Units for
T (YI(Dobs)(D

obs), D)

i1i1 i2

i3i4

(a) D: i1; Dobs: i1

i1 i2

i3i4

(b) D: i2; Dobs: i1

i1 i2

i3i4

(c) D: i3; Dobs: i1

i1 i2

i3i4

(d) D: i4; Dobs: i1

Notes: Red circles indicate treated units in D, which determine neighbor units in
the interval (0, 1] and control units in (1,∞). Red rectangles indicate treated units
in Dobs, which determine imputable units.

Additionally, I can incorporate rank statistics by excluding non-imputable units

and reranking the remaining units. Following Imbens & Rubin (2015), I define the

rank as

Ri ≡ Ri

(
YI(Dobs)∩I(D)(D

obs)
)
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=
∑

j∈I(Dobs)∩I(D)

1{Yj(Dobs) < Yi(D
obs)}

+ 0.5
(
1 +

∑
j∈I(Dobs)∩I(D)

1{Yj(Dobs) = Yi(D
obs)}

)
− 1 + ∥I(Dobs) ∩ I(D)∥

2
.

Thus, the test statistic becomes

T (YI(Dobs)(D
obs), D) = R̄{i:D∈Di(ϵs)/Di(ϵc)} − R̄{i:D∈Di(ϵc)}.

When Yi(D
obs) = Yi(D) for all i ∈ I(Dobs) ∩ I(D), Ri(YI(Dobs)∩I(D)(D

obs)) =

Ri(YI(Dobs)∩I(D)(D)), meaning the ranks remain unchanged. Therefore,

T (YI(Dobs)(D
obs), D) = T (YI(Dobs)(D), D), satisfying Definition 6.

For further discussion on selecting test statistics in randomization tests and

network settings, see Section 5 of Imbens & Rubin (2015), Athey et al. (2018), and

Hoshino & Yanagi (2023). All test statistics can also be adapted to their absolute-

value forms for two-sided testing.

While the method remains valid without covariate adjustments, incorporating

them may improve the test’s power in practice (Wu & Ding, 2021). See Appendix

A.6 for a discussion on incorporating covariates. Moreover, since the proposed

method is finite-sample valid, researchers can conduct subgroup analysis when

expecting different patterns of interference across covariates.

Following Definition 6 of pairwise imputable statistics, I can derive a property

to calculate test statistics using only the observed information:

Proposition 1. Suppose the partially sharp null hypothesis Hϵs
0 is true. Suppose
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T (YI(d)(d), d
′) is a pairwise imputable statistic. Then,

T (YI(d)(d), d
′) = T (YI(d)(d

′), d′)

for any d, d′ ∈ {0, 1}N .

The proof is provided in Appendix A.1. Let d = Dobs and d′ = D. By Propo-

sition 1, T (YI(Dobs)(D
obs), D) = T (YI(Dobs)(D), D) under the null Hϵs

0 , ensuring I ob-

serve a counterfactual test statistic for comparison.

1.3.2 Unconditional Randomization Test

In this chapter, I am interested in the unconditional randomization test framework

that satisfies the following definition:

Definition 7 (Unconditional randomization test). An unconditional randomization

test ϕ : {0, 1}N → [0, 1] is defined such that for any Dobs ∈ {0, 1}N ,

ϕ(Dobs) = Q(p̃(Dobs), α),

where Q : [0, 1] × [0, 1] → [0, 1] is a measurable function, α is the nominal level, and

p̃(Dobs) can be written as

p̃(Dobs) =
∑

d∈{0,1}N
g(Dobs, d)P (D = d),

with P being the pre-specified probability distribution on the treatment assignment, and

g : {0, 1}N × {0, 1}N → {0, 1} a measurable function.

The key feature of the unconditional randomization test is that the probabil-

ity of rejection, ϕ(Dobs), is computed by randomizing the treatment assignment
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according to the same probability distribution P that governs the original treat-

ment assignment. This contrasts with methods in the existing literature, such as

Athey et al. (2018), where the rejection function is based on randomizing the treat-

ment assignment within a conditional probability space, conditioned on certain

events. One example is the simple randomization test, which uses pairwise im-

putable statistics, with p-values constructed similarly to the classic FRT.

One example is the simple randomization test, which uses pairwise imputable

statistics, with p-values constructed similarly to the classic FRT.

Definition 8 (Simple randomization test). A simple randomization test is an uncondi-

tional randomization test defined by ϕ(Dobs) = 1{pval(Dobs) ≤ α}, where pval(Dobs) :

{0, 1}N → [0, 1] is the p-value function given by

pval(Dobs) = P (T (YI(Dobs)(D
obs), D) ≥ T (YI(Dobs)(D

obs), Dobs)) for D ∼ P,

and T (YI(d)(d), d′) denotes a pairwise imputable statistic.

Running Example Continued. Using pairwise imputable statistics

T (YI(Dobs)(D
obs), D) and following Table 1.4, we can construct Table 1.5 with

the test statistics for each assignment.

Following Definition 8, the p-value is given by

pval(Dobs) = P (T (YI(Dobs)(D
obs), D) ≥ T (YI(Dobs)(D

obs), Dobs))

with respect to D ∼ P , where D is drawn independently from Dobs. Based on

Table 1.5, this results in a p-value of 2/4. However, one might question whether

this procedure guarantees finite-sample validity—specifically, whether it satisfies

the condition EP (ϕ(D
obs)) ≤ α under the null hypothesis.
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Table 1.5: Simple Randomization Test in the Example

Assignment D Potential Outcome Yi T (YI(Dobs)(D
obs), D)

i1 i2 i3 i4
(1, 0, 0, 0) 2 4 3 2 1.5
(0, 1, 0, 0) ? ? 3 2 2
(0, 0, 1, 0) ? 4 ? 2 -2
(0, 0, 0, 1) ? 4 3 ? -1

Notes: Assignment D includes all potential assignments, with the first row rep-
resenting the observed assignment Dobs. Potential Outcome Yi is the potential
outcome of each unit under the null H0

0 , while red question marks denote missing
values. Unit i1 does not belong to the set I(Dobs), so the column is marked in red.
Blue cells represent the units used to calculate the mean value in the first term of
the test statistics. T (YI(Dobs)(D

obs), D) are test statistics for different D, fixing Dobs

where unit i1 is treated.

Investigating Finite-Sample Validity. Although pairwise imputable statistics

are used, naively constructing the p-value as defined in the classic FRT does not

guarantee the test’s validity. For the test to be valid, the following condition must

hold under the partially sharp null hypothesis:

T (YI(Dobs)(D
obs), D)

d
= T (YI(Dobs)(D

obs), Dobs),

where d
= indicates equality in distribution. The distribution on the left-hand

side (LHS) is with respect toD, while the distribution on the right-hand side (RHS)

is with respect to Dobs.

By Proposition 1, under the null hypothesis, we also have:

T (YI(Dobs)(D
obs), D)

H0= T (YI(Dobs)(D), D).

Here,
H0= denotes equality under the null hypothesis. However, the term

T (YI(Dobs)(D
obs), Dobs), being induced by the randomness of Dobs, satisfies:
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T (YI(Dobs)(D
obs), Dobs)

d
= T (YI(D)(D), D).

Thus, for the test to maintain validity, we require:

T (YI(Dobs)(D), D)
d
= T (YI(D)(D), D).

This condition is not guaranteed under the partially sharp null hypothesis be-

cause I(Dobs) ̸= I(D) in general. Different treatment assignments D result in dif-

ferent sets of imputable units, leading to variability in I(D). This is a key tech-

nical challenge. In the special case of testing the sharp null hypothesis, where

I(Dobs) = {1, . . . , N} = I(D), the validity trivially holds.

To address the challenges posed by varying imputable unit sets, previous liter-

ature suggests a remedy through the design of a conditioning event that consists of

a fixed subset of imputable units, known as focal units, and a fixed subset of assign-

ments, known as focal assignments. CRTs are then performed by conducting FRTs

within this conditioning event. However, using conditioning events in practice

introduces two key drawbacks.

First, as Zhang & Zhao (2023) pointed out, there is a trade-off between the sizes

of focal units and focal assignments: a larger subset of treatment assignments typi-

cally corresponds to a smaller subset of experimental units. This inevitably results

in a loss of information, with fewer units and assignments within the conditioning

events, potentially affecting the test’s power. Second, constructing the condition-

ing event adds a layer of computational complexity. This raises the question: can

unconditional randomization testing still be valid in finite samples?

While previous approaches rely on carefully designing a fixed subset of units
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to maintain the validity of randomization testing, my method avoids fixing the

subset of units during implementation. Instead, it achieves valid testing through a

carefully designed p-value calculation, ensuring finite-sample validity without the

need for conditioning events.

1.3.3 The Pairwise Comparison-Based p-values

Building on the selective inference literature (Wen et al., 2023; Guan, 2023), the

key idea is to compute p-values by summing pairwise inequality comparisons be-

tween T (YI(Dobs)(D
obs), dr) and T (YI(dr)(D

obs), Dobs). When the null hypothesis is

false, T (YI(dr)(Dobs), Dobs) remains relatively large across different dr since the dis-

tance interval for each unit is fixed by Dobs. The change in dr only alters the set of

units used in the test statistics, and rejection of the null is still possible when the

units in the neighborhood set tend to have high outcome values. As a result, we

would expect a small p-value, as the probability that T (YI(Dobs)(D
obs), dr) exceeds

T (YI(dr)(D
obs), Dobs) is low.

Formally, I refer to any randomization test with p-values constructed through

this pairwise comparison method as a “PIRT.”

Definition 9 (PIRT). The PIRT is an unconditional randomization test defined by

ϕpair(Dobs) = 1{pvalpair(Dobs) ≤ α/2}, where pvalpair(Dobs) : {0, 1}N → [0, 1] is the

p-value function given by

pvalpair(Dobs) = P (T (YI(Dobs)(D
obs), D) ≥ T (YI(D)(D

obs), Dobs)) for D ∼ P,

and T (YI(d)(d), d′) denotes a pairwise imputable statistic.

Theorem 1. Suppose the partially sharp null hypothesis Hϵs
0 holds. Then, the PIRT, as
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defined in Definition 9, satisfies EP [ϕ
pair(Dobs)] < α for any α ∈ (0, 1), where the expec-

tation is taken with respect to Dobs ∼ P .

See the proof in Appendix A.1. Theorem 1 provides a worst-case guarantee,

similar to cross-conformal prediction and jackknife+, due to certain pathological

cases (Vovk et al., 2018; Barber et al., 2021; Guan, 2023). As in that literature, it

empirically achieves size control at α/2, as demonstrated in Section 1.4.1.15

Even with a large sample, an unbiased estimator of the p-value can be com-

puted using Algorithm 1, which calculates the p-value as the average of 1 + R

draws, with r = 0 corresponding to d = Dobs. See Appendix A.1 for a detailed

discussion.

Algorithm 1 PIRT p-value
Inputs : Test statistic T = T (Y (d), d), observed assignment Dobs, observed out-

come Y obs, treatment assignment mechanism P , and size α.
for r = 1 to R do

Randomly sample dr ∼ P , and store Tr ≡ T (YI(Dobs)(D
obs), dr).

Store T obs
r ≡ T (YI(dr)(D

obs), Dobs).
end

Output : p-value: ˆpval
pair

= (1 +
∑R

r=1 1{Tr ≥ T obs
r })/(1 + R).

Running Example Continued. Using the difference-in-mean estimator as before,

T (YI(D)(D
obs), Dobs) = ȲI(D)(D

obs){i:Dobs∈Di(0)/Di(1)} − ȲI(D)(D
obs){i:Dobs∈Di(1)}.

As shown in Figure 1.5, for each treatment assignmentD, the test statistic is cal-

culated as the mean value of i2 (excluding missing values) minus the mean value

of i3 and i4 (excluding missing values).

15See Appendix A.3 for a more conservative minimization-based PIRT that achieves theoretical
size control with a rejection threshold of α.
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Table 1.6: PIRT in the Example

Assignment D Potential Outcome Yi ȲI(D)(D
obs) T (YI(D)(D

obs), Dobs)

i1 i2 i3 i4 {i : Dobs ∈ Di(0)/Di(1)} {i : Dobs ∈ Di(1)}

(1, 0, 0, 0) 2 4 3 2 4 2.5 1.5
(0, 1, 0, 0) ? ? 3 2 ? 2.5 2
(0, 0, 1, 0) ? 4 ? 2 4 2 2
(0, 0, 0, 1) ? 4 3 ? 4 3 1

Notes: Assignment D includes all potential assignments, with the first row repre-
senting the observed assignment Dobs. Potential Outcome Yi is the potential out-
come of each unit under the null H0

0 , with red question marks indicating missing
values. Unit i1 does not belong to either the neighborhood set or the control set
under Dobs, so the column is marked red. Unit i2 is in the distance interval (0, 1]
under Dobs, so the column is marked blue. Units i3 and i4 are in the distance inter-
val (1,∞) under Dobs, so those columns are marked brown. T (YI(D)(D

obs), Dobs)
is calculated as the mean of non-missing potential outcomes in the blue columns
minus the mean of non-missing potential outcomes in the brown columns.

Figure 1.5: Imputable Neighbor and Control Units for
T (YI(D)(D

obs), Dobs)

i1i1 i2

i3i4

(a) Dobs: i1, D: i1

i1 i2

i3i4

(b) Dobs: i1, D: i2

i1 i2

i3i4

(c) Dobs: i1, D: i3

i1 i2

i3i4

(d) Dobs: i1, D: i4

Notes: Treated units in Dobs are marked with red circles and determine the neigh-
bor units in the interval (0, 1] and control units in (1,∞). Treated units in D are
marked with red rectangles and determine the imputable units.

Based on Tables 1.6 and 1.4, I can construct Table 1.7, where each row represents

the values used to compare and construct the p-value for each (Dobs, D) pair.

Only when D involves treating units i1 or i2 does T (YI(Dobs)(D
obs), D) ≥

T (YI(D)(D
obs), Dobs). Hence, pvalpair = 2/4. In practice, similar to Guan (2023),

using 1/2 to discount the number of equalities can reduce the p-value without com-

promising test validity. Additionally, in simulation experiments, using a uniform

random number multiplied by the number of equalities also maintains test valid-

ity.
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The validity of Algorithm 1 follows from the symmetry between

T (YI(Dobs)(D
obs), dr) and T (YI(dr)(D

obs), Dobs) under the null hypothesis Hϵs
0 .

Intuitively, for each pair of assignments Dobs and dr, both terms are restricted to

units i ∈ I(Dobs)∩I(dr) by Definition 6. Moreover, by Proposition 1, under the null,

with d = D and d′ = Dobs, we have T (YI(D)(D
obs), Dobs) = T (YI(D)(D), Dobs), which

is the counterfactual value of T (YI(Dobs)(D
obs), D) when flipping the observed

assignment and randomized assignment between D and Dobs. Thus, the pairwise

comparison is symmetric, and its validity follows from the conformal lemma in

the conformal prediction literature (Guan, 2023).

Table 1.7: Pairwise Comparison for PIRT

Assignment D Potential Outcome Yi T (YI(Dobs)(D
obs), D) T (YI(D)(D

obs), Dobs)

i1 i2 i3 i4
(1, 0, 0, 0) 2 4 3 2 1.5 1.5
(0, 1, 0, 0) ? ? 3 2 2 2
(0, 0, 1, 0) ? 4 ? 2 -2 2
(0, 0, 0, 1) ? 4 3 ? -1 1

Notes: Assignment D includes all potential assignments, with the first row repre-
senting the observed assignment Dobs. Potential Outcome Yi is the potential out-
come of each unit under the null H0

0 , with red question marks indicating missing
values. T (YI(Dobs)(D

obs), D) are test statistics under different D while fixing Dobs

for imputable units, with the same values as in Table 1.5. T (YI(D)(D
obs), Dobs) are

test statistics under different D for imputable units, with the same values as in Ta-
ble 1.6.

Similar to Guan (2023), for non-directional tests, the absolute value of the test

statistic can be used. For directional tests, the statistic can be applied to test for

positive effects, while the negation of the statistic can be used to test for negative

effects.
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1.3.4 Comparison to Previous Literature

As previously discussed, a key distinction in PIRT is that the set of units included

in I(d) varies across different assignments d, allowing all imputable units to be

used for testing. However, under the sharp null hypothesis, I(d) = {1, . . . , N} for

all d ∈ {0, 1}N , leading to

T (YI(d)(D
obs), Dobs) = T (Y (Dobs), Dobs) for any d,Dobs ∈ {0, 1}N .

Thus, PIRT reduces to the classical FRT. The proposed method generalizes the FRT

framework, ensuring validity under the partially sharp null hypothesis by allow-

ing the set of units in the test statistic to vary across different assignments.

Comparison to the CRTs When testing under a partially sharp null hypothesis,

the p-values constructed in Definitions 9 aligns closely with those from CRTs if

we interpret I(Dobs) as a focal unit set and {0, 1}N as a focal assignment set. The

pair (I(Dobs), {0, 1}N) represents a broader conditioning event than the traditional

events in CRTs, which may or may not yield higher statistical power depending

on whether the additional potential units and assignments contribute meaningful

information.

In scenarios where a conditioning event can be specified over all imputable

units in I(Dobs), as demonstrated in Basse et al. (2024), CRTs with a well-defined

focal assignment set may facilitate more targeted comparisons, potentially leading

to a higher power. However, in cases where designing a suitable conditioning

event is either infeasible or would produce only a limited number of focal units

and assignments, PIRT can serve as a more practical alternative. Broadly, when

including all assignments from {0, 1}N is suboptimal, combining PIRTs with CRTs
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could improve power by focusing on more pertinent test statistics and selected

assignments (Lehmann & Romano, 2005; Hennessy et al., 2015). This approach

highlights a promising avenue for future research on optimizing power through

the flexibility of PIRTs and CRTs.

In practice, a researcher may want to test multiple distance levels ϵs rather than

just a single one to estimate the boundary of interference. A sequential testing ap-

proach can achieve this by starting from the smallest ϵs and increasing until the test

fails to reject. This method provides an estimate of the interference boundary while

automatically controlling the family-wise error rate without requiring additional

size adjustments. See Appendix A.5 for a detailed discussion on implementing this

framework and adjusting for sequential testing.

1.4 EMPIRICAL APPLICATION

In 2016, a large-scale experiment was conducted in Bogotá, Colombia, as described

by Blattman et al. (2021). The study involved 136,984 street segments, with 1,919

identified as crime hotspots. Among these, 756 were randomly assigned to a treat-

ment involving increased daily police patrolling from 92 to 169 minutes over eight

months. It also included a secondary intervention aimed at enhancing municipal

services, though this is peripheral to the primary focus of my empirical applica-

tion. The key outcome of interest was the number of crimes per street segment,

encompassing both property crimes and violent crimes (e.g., assault, rape, and

murder).

Figure 1.6a shows the distribution of hotspots, with many located close to each

other. While only 756 street segments received the treatment, every segment po-

tentially experienced spillover effects, creating a dense network. This complicates
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the application of cluster-robust standard errors for addressing unit correlation.

The study estimated a negative treatment effect and used FRTs with a sharp null

hypothesis of no effect for inference.

Figure 1.6: Map of Experimental Sample and Treatment Conditions

(a) Experimental Sample Map
(b) Assignment to Experimental Condi-
tions

Notes: Panel (a) displays a map of the experimental sample, with hotspot street
segments marked in red. Panel (b) shows an example of the assignment to the four
experimental conditions. Source: Blattman et al. (2021).

In evaluating the total welfare impact of the policy, it is essential to assess

whether interference occurred following treatment assignment, such as crime dis-

placement or deterrence in neighboring areas. I aim to address three key questions:

1) Does interference exist? 2) If so, is it displacement or deterrence? 3) At what dis-

tance is this interference effective? Given the complexity of modeling correlation

across units in such a dense network, testing a partially sharp null hypothesis,
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as proposed by Blattman et al. (2021) and Puelz et al. (2021), becomes relevant. I

specify the distance threshold sequence (ϵ0, ϵ1, ϵ2, ϵ3) = (0, 125, 250, 500) for K = 3,

where the interval (500,∞) represents a pure control group with no treated units

within 500 meters. Figure 1.6b provides an example of the distance intervals iden-

tified in Blattman et al. (2021).

Table 1.8 presents descriptive statistics for the number of crimes during the

intervention period. The t-statistics for t-tests between each of the two columns re-

veal two key findings: treated hotspots experience significantly fewer crimes, and

non-hotspot areas report even fewer crimes when located farther from any treated

units. However, the extremely high values of the t-statistics raise concerns about

interpreting these t-test results as evidence of a displacement effect. As noted ear-

lier, standard errors may be under-estimated, and units at varying distances from

treated areas may not be directly comparable. Both factors could contribute to the

high t-statistics observed in the table.

In Blattman et al. (2021), the authors reported no significant displacement ef-

fect for violent crimes and a marginally significant displacement effect for prop-

erty crimes.16 However, as previously illustrated, p-values for the t-test may not

adequately capture the extent of interference. Moreover, using FRTs to test par-

tially sharp null hypotheses may not be valid. Thus, how might these conclusions

change if a valid testing approach is implemented?

1.4.1 Power Comparison of Spatial Interference: A Simulation Study

To evaluate the methodology in a large-scale setting, I conduct a simulation study

to preselect the preferred method. For simplicity, the sample size is set to 1,000

16The treatment effect for violent crime was significant but property crime effects were insignifi-
cant.
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units, including 20 hotspots and 7 randomly treated units, mirroring proportions

in the original Bogotá study. I focus on two distance thresholds, using (ϵ0, ϵ1, ϵ2) =

(0, 0.1, 0.2). See Appendix A.7 for a detailed discussion.

To approximate the Bogotá setting, I calibrate the potential outcome schedule

using gamma distributions that match the observed mean and variance of total

crimes (Table A.7.1). A negative treatment effect of 1 is imposed while maintain-

ing non-negative crime counts for treated units. Additionally, a decreasing dis-

placement effect is introduced via a positive τ , which is the primary focus of this

analysis.

The partially sharp null hypothesis for k = 0 and 1 is given by

Hϵk
0 : Yi(d) = Yi(d

′) for all i ∈ {1, . . . , N}, and any d, d′ ∈ Di(ϵk).

In the analysis, I compare five methods: 1) the classic FRT, using the sharp null

hypothesis of no effect, as used in Blattman et al. (2021) for spillover effect infer-

ence; 2) the biclique CRT proposed by Puelz et al. (2021), a benchmark for CRTs due

to their strong power properties in simulations involving general interference; 3)

the PIRT with rejection based on α/2, ensuring validity in the worst-case scenario;

and 4) the PIRT with rejection based on α.

Two main criteria guide the testing procedure selection. First, in the absence

of a spillover effect (τ = 0), the partially sharp null hypothesis should be rejected

no more than 5% of the time, maintaining type I error control. Second, when a

spillover effect exists (τ > 0), the partially sharp null hypothesis should be re-

jected as frequently as possible to maximize power. To assess power, I consider 50

equally spaced τ values between 0 and 1, conducting 2,000 simulations for each τ

to compute the average rejection rate for each method. The algorithm is detailed
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in Appendix A.7, with a focus on displacement effects and one-sided testing using

the non-absolute difference in mean.

Figure 1.7: Power Comparison of Testing Methods for Different Hy-
potheses

Notes: The left panel shows the power comparison for testing H0
0 , while the right

panel illustrates the power comparison for H0.1
0 . The red line indicates the size

level α = 0.05. PIRT (0.025) indicates the PIRT with a rejection threshold of α/2,
and PIRT (0.05) denotes the PIRT with rejection based on α.

Figure 1.7 (left panel) shows that the FRT over-rejects the true partially sharp

null hypothesis when τ = 0, consistent with Athey et al. (2018)’s observation that

testing the sharp null of no effect is invalid for partially sharp null hypotheses.

In my simulation, with only seven treated units (0.7% of the total), the rejection

rate is around 10%. Surprisingly, the PIRT without adjustment at the α level main-

tains good size control, indicating that the α/2 rejection level primarily provides a

worst-case guarantee and can be conservative, with rejection rates below 5%. The

biclique CRT remains valid, with a rejection rate near 5%.

Regarding power, the FRT is excluded from the comparison due to its inva-

lidity. The unadjusted PIRT demonstrates the best performance, outperforming

other methods across all effect magnitudes τ . Among methods with theoretical
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size control, the PIRT with α/2 rejection is optimal, though it slightly lags behind

the biclique CRT for small τ values. Despite its validity, the power of the biclique

CRT increases slowly as the spillover effect grows, with a rejection rate remaining

below 90% even when τ = 1.

The right panel of Figure 1.7 contrasts with the results in the left panel. First,

all methods, including the FRT, maintain validity under the null hypothesis. This

may be due to the fact that hotspots rarely belong to the exposure levels (0.1, 0.2]

or (0.2,∞). As a result, despite the negative treatment effect, its impact on the test

statistics used for this analysis remains minimal. Similar to the case of H0
0 , both the

PIRT and biclique CRT methods exhibit rejection rates close to 5%, while the PIRT

with a rejection level of α/2 remains conservative.

Second, all methods demonstrate significantly lower power compared to the re-

sults underH0
0 . This is largely because only 60% of the units are relevant to the par-

tially sharp null hypothesis in this scenario, and the spillover effect magnitude is

halved (0.5τ ). Nevertheless, the PIRT method still exhibits sufficient power when

the spillover magnitude τ is large enough, outperforming other methods, partic-

ularly when using the unadjusted rejection level α. Surprisingly, the FRT exhibits

under-rejection, with almost no power across all values of τ . This can be explained

by the nature of the FRT: the p-value remains large unless the observed test statis-

tic exceeds most test statistics generated from randomized treatment assignments.

However, since units within the group (0, 0.1] under the observed assignment con-

tribute to test statistics for other randomized assignments d–and these units are

subject to a spillover effect of τ–the observed test statistics constructed from units

in (0.1, 0.2] and (0.2,∞) fail to exhibit high values, even when τ is large. This re-

sults in large p-values for the FRT, explaining its under-rejection.
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Taken together with the earlier discussion for H0
0 , these findings illustrate how

the FRT, when used to test partially sharp null hypotheses, may lead to either

over-rejection or under-rejection depending on the scenario. Finally, although the

biclique CRT method demonstrates power, its increase is slower than that of the

PIRT methods, which may be attributed to the complexity of finding an optimal

conditioning event in the presence of spatial interference. One point worth noting

is that the performance of the biclique method depends on the parameter values

used for solving the bicliques; thus, with more advanced computing resources, its

power performance could improve. Overall, the key advantage of my method lies

in its computational simplicity, and future research could further explore power

comparisons between different methods.

Overall, the results favor PIRT methods, especially the unadjusted PIRT. Thus, I

apply PIRTs to replicate the results of Blattman et al. (2021), using the non-absolute

difference-in-mean estimator.

1.4.2 Implementation of PIRTs for Testing the Existence of a Displacement Ef-

fect

Consider the experimental setting described in Blattman et al. (2021), where the ob-

served treatment assignment is denoted by Dobs. Similar to Blattman et al. (2021),

we can regress the number of crimes, Y , on a spillover proximity indicator S(Dobs),

which indicates whether units are within 125 meters of any treated unit. This prox-

imity indicator is directly determined by the treatment assignmentDobs and would

change with a different treatment assignment D. While additional covariates can

be included in the regression, the key test statistic remains the coefficient from

regressing Y on the proximity indicator S(D).
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To test the partially sharp null hypothesis using the PIRT, follow these steps:

1. Randomly reassign treatments D to the units.

2. For each reassignment D, identify the subsample of units that are untreated

under both Dobs and D. These units form the set of imputable units, as their

potential outcomes remain unaffected by treatment under both assignments.

3. Collect the coefficient β from the regression of Y on S(Dobs) within the sub-

sample of imputable units.

4. Collect the coefficient β′ from the regression of Y on S(D) within the same

subsample of imputable units.

Both steps 3 and 4 construct the pairwise imputable statistics, which use only

untreated units under either the observed treatment assignment Dobs or the ran-

domized assignment D.

For the rejection decision when testing for displacement effects, the PIRT com-

putes the p-value as the fraction of reassignments D such that β′ ≥ β. The null hy-

pothesis of no displacement effect is rejected if the p-value is less than or equal to

α/2. Simulation results suggest that using α as the rejection threshold is also empir-

ically valid. The method accommodates two-sided tests by comparing ∥β′∥ ≥ ∥β∥

or by testing for deterrence effects using the negative of the coefficient, comparing

−β′ ≥ −β.

1.4.3 PIRT on Actual Data

I conduct the analysis using the publicly available dataset from Blattman et al.

(2021), which includes street-level treatment assignments and distance intervals
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with thresholds at 125, 250, and 500 meters. The dataset also contains 1, 000

pseudo-randomized treatments and their respective distance intervals, used in the

original paper for randomization inference. However, the dataset lacks precise

longitude and latitude data for the street segments, preventing me from extending

randomization testing beyond the available 1, 000 random treatments.

Due to the large fraction of zero outcomes, I use both an indicator for any crime

occurrence and the number of crimes as outcome variables, as shown in Table 1.9.

In the main specification, I use the PIRT with the difference-in-means estimator

as the test statistic. A key advantage of this framework is that it remains valid

regardless of the choice of test statistic. However, in practice, researchers may

incorporate covariates to improve power or conduct heterogeneous analysis. See

Appendix A.6.2 for a detailed discussion on how to incorporate covariates into the

analysis and additional insights gained from doing so.

Tables 1.9 reveal a significant displacement effect for violent crimes but not for

property crimes. This contrasts with the original study, which found no evidence

of significant displacement effects for violent crime. After adjusting for multiple

hypothesis testing using Algorithm A.5.1, PIRT detects a significant short-range

displacement effect within 125 meters at the 10% level when using the difference-

in-means estimator. Moreover, it could be significant at the 5% level if directly

reject by level α, as suggested by the simulation study. On the other hand, there is

no evidence of spillover effects at any distance for property crimes.

For violent crimes, however, there is evidence of additional spillover effects be-

yond 250 meters, with an unadjusted p-value of 0.045 for the (250m,∞) interval

when using the number of crimes as the outcome variable in PIRT. This suggests

the presence of two distinct types of offenders committing violent crimes: risk-
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averse criminals may relocate farther away rather than being displaced to nearby

neighborhoods, while less risk-averse criminals are more likely to relocate to adja-

cent areas.

To test this hypothesis, I further disaggregate violent crimes into socially

costly crimeshomicides and sexual assaultsand other violent crimes. Table 1.10

presents results that investigate heterogeneous displacement patterns within vi-

olent crimes, revealing distinct interference effects. Specifically, socially costly

crimes contribute to spillover effects beyond 250 meters but not within 125 meters.

High-risk offenders involved in homicides and sexual assaults tend to relocate far-

ther away in response to intensive policing, rather than being displaced to nearby

neighborhoods. This finding underscores the dynamic responses of different types

of offenders to hot-spot policing.

To the best of my knowledge, this is the first causal evidence of a displacement

effect extending to more distant areas rather than proximate neighborhoods.17

However, after adjusting for multiple hypothesis testing using Algorithm A.5.1,

these results are no longer statistically significant. Applied researchers should in-

terpret these findings with caution in future studies.

These results not only highlight the general applicability of the PIRT method

but also provide suggestive evidence for policy implications and potential crim-

inal motives in Bogotá, following the insights of Blattman et al. (2021). From a

policy perspective, it remains unclear whether reallocating state resources to these

hotspots has led to an overall reduction in crime. Further investigation is needed

to identify the specific locations most affected by displacement so that those areas

can be directly targeted.

17This finding suggests that the distance interval (500m,∞) may serve as a more appropriate
control group than the (250m,∞) interval used by Blattman et al. (2021).
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Regarding criminal motives in Bogotá, a possible explanationconsistent with

standard economic models of crimeis that violent crime in the city’s hotspots is

not purely expressive, as suggested by Blattman et al. (2021). Instead, some vio-

lent crimes, such as contract killings, may be driven by generally mobile criminal

rents. By increasing the risk of detection, intensive policing deters criminals from

committing crimes in specific locations but the crimes themselves may relocate

rather than be entirely prevented. In contrast, property crimes, which are often

instrumental and linked to immobile criminal rents, appear to be deterred without

causing further spillover effects. As Blattman et al. (2021) noted, violent crimes are

often considered more severe than property crimes, making displacement effects

an essential consideration when evaluating the overall welfare impact of policy

interventions.
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Table 1.8: Descriptive Statistics During the Intervention

Stats Crime hotspots Non-hotspots (distance to treated units)
Treated Non-treated (0m, 125m] (125m, 250m] (250m, 500m] (500m,∞)

Obs. 756 1,163 24,571 32,034 45,147 33,313

# of total crimes
Mean 0.935 1.311 0.378 0.294 0.242 0.180
SD 1.519 2.332 1.006 0.921 0.736 0.602
Max 12 43 33 40 25 31

% of > 0 44.84 53.22 23.17 19.01 16.69 13.13

t-stat of t-test -3.93 10.34 8.60 12.62

# of property crimes
Mean 0.712 1.035 0.262 0.195 0.158 0.111
SD 1.269 2.099 0.778 0.683 0.555 0.441
Max 12 40 32 36 21 27

% of > 0 38.36 45.66 17.44 13.96 11.90 8.86

t-stat of t-test -3.81 10.93 8.26 12.83

# of violent crimes
Mean 0.224 0.276 0.115 0.099 0.084 0.069
SD 0.593 0.650 0.467 0.473 0.376 0.334
Max 5 6 17 40 13 11

% of > 0 16.40 20.29 8.59 7.29 6.51 5.47

t-stat of t-test -1.79 4.23 4.75 5.79

Notes: This table presents descriptive statistics for crime data during the inter-
vention, divided into two categories: crime hotspots (treated and non-treated) and
non-hotspot areas, which are further grouped by their distance from the treated
units. The statistics cover three types of crimes: total crimes, property crimes,
and violent crimes. For each group, the table provides the mean, standard devia-
tion (SD), maximum (Max), and the percentage of units with positive crimes (% of
> 0). The t-statistic values (t-stat of t-test) represent the results from t-tests com-
paring the difference in means between treated versus non-treated units within
crime hotspots, non-hotspot units within (0m, 125m] versus (125m, 250m], non-
hotspot units within (125m, 250m] versus (250m, 500m], and non-hotspot units
within (250m, 500m] versus (500m,∞).
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Table 1.9: p-Values: Testing the Displacement Effect at Different Dis-
tances

Unadjusted p-values
(0m,∞) (125m,∞) (250m,∞)

Violent crime
Indicator of > 0 0.027 0.812 0.060
# of crimes 0.047 0.546 0.045
Property crime
Indicator of > 0 0.390 0.466 0.486
# of crimes 0.325 0.346 0.394

Notes: The table shows the impact of intensive policing on violent and property
crime. "Indicator of > 0" refers to an indicator for any crime occurrence, while "#
of crimes" represents the raw number of reported crimes. p-Values are constructed
using the difference-in-means estimator as the test statistic.

Table 1.10: p-Values: Heterogeneous Patterns Within Violent Crimes

Unadjusted p-values
(0m,∞) (125m,∞) (250m,∞)

Homicides and sexual assaults
Indicator of > 0 0.274 0.864 0.065
# of crimes 0.417 0.815 0.043
Not homicides or sexual assaults
Indicator of > 0 0.030 0.752 0.097
# of crimes 0.044 0.491 0.057

Notes: The table reports the impact of intensive policing on two types of violent
crimes. Indicator of > 0: indicator of any crime; # of crimes: raw number of re-
ported crimes. p-Values constructed based on the difference-in-means estimator as
the test statistic.
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1.5 CONCLUSION

This paper introduces a practical testing framework for detecting interference in

network settings. The proposed tests offer computational simplicity over previous

methods while retaining strong power and size properties, making them highly

applicable for empirical research.

Theoretically, I formalize unconditional randomization testing and PIRT, ad-

dressing two primary challenges in testing partially sharp null hypotheses: only

a subset of potential outcomes is imputable, and the set of units with imputable

potential outcomes varies across treatment assignments. The PIRT addresses the

first challenge by employing pairwise imputable statistics and the second by con-

structing p-values through pairwise comparisons. I prove the PIRT maintains size

control, and I propose a sequential testing procedure to estimate the “neighbor-

hood of interference, ensuring control over the FWER.

Beyond network settings, the PIRT might hold broader applicability. For in-

stance, Zhang & Zhao (2021) shows that partially sharp null hypotheses are rele-

vant in time-staggered designs. This opens promising avenues for future research,

including extending the framework to quasi-experimental settings and observa-

tional studies. In quasi-experimental designs, developing a unified framework

that can be applied to time-staggered adoption, regression discontinuity, and net-

work settings would be highly valuable (Borusyak & Hull, 2023; Kelly, 2021). For

observational studies, incorporating propensity score weighting to create pseudo-

random treatments and conducting sensitivity analyses would be crucial, as noted

by Rosenbaum (2020).

While simulations suggest that the PIRT performs favorably compared to CRTs,

their power properties remain unexplored. Insights from studies such as Puelz
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et al. (2021) on CRT power properties and Wen et al. (2023) on the near-minimax

optimality of minimization-based p-values suggest that further exploration of

PIRT’s power could yield valuable insights. Additionally, power may increase

when the PIRT is combined with CRTs in specific settings, making the construc-

tion of an optimal testing framework for interference an important question for

future research.
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CHAPTER 2

Convexity Not Required: Estimation of Smooth Moment Condition Models

2.1 INTRODUCTION

The Generalized and Simulated Method of Moments (GMM, SMM) are commonly

used to estimate structural Economic models. To find these estimates, modern

computer software provides researchers with a large set of free and non-free nu-

merical optimizers, which, after inputting some tuning parameters, return a guess

for the parameters of interest. While sampling properties of estimators are often

derived, their practical implementation often receives a less detailed treatment.

There is now a vast literature on statistical learning with a convex loss function.

However, these results need not directly apply to GMM, as it often involves non-

convex minimizations. A number of authors have pointed out the lack of robust-

ness of off-the-shelf methods, Knittel & Metaxoglou (2014) illustrate this in the

context of demand estimation.

In many empirical studies, the authors comment on the challenge of estima-

tion due to the non-convexity of the sample GMM objective function. Methods

like gradient-descent or quasi-Newton are seldom used, not too surprisingly as

these are convex optimizers. An important concern is that, in general, non-convex

optimization is particularly challenging when the number of parameters to be esti-

mated is moderate or large, as generic non-linear optimization is subject to a curse

of dimensionality (Andrews, 1997, Sec2).

The main contribution of the chapter is to show that convexity is not required

for some methods to perform well in GMM estimation, specifically: some algo-

rithms are globally convergent if the Jacobian of the moments satisfies a global
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rank condition. This defines a class of non-convex problems that is as hard as

convex problems for optimization. Since this is perhaps surprising, the follow-

ing gives some intuition behind the result. Suppose the sample moments gn(θ) =

∂θℓn(θ) correspond to the gradient of a sample log-likelihood function, say that

of a Probit model. Then, their Jacobian Gn(θ) = ∂2θ,θ′ℓn(θ) is the Hessian of the

log-likelihood. The Jacobian of the moments is the Hessian of the log-likelihood,

so it is strictly negative definite everywhere when the log-likelihood, to be max-

imized, is strictly concave. Meanwhile, the GMM objective Qn(θ) = 1
2
∥gn(θ)∥2,

to be minimized, here with identity weighting, need not be convex. Its Hessian

∂2θ,θ′Qn(θ) = Gn(θ)
′Gn(θ)+(gn(θ)

′⊗Id)∂θvec(G′
n(θ)) can be singular, or non-definite,

depending on the last term.1 When this is the case: ℓn is concave but Qn is non-

convex, even though they estimate the exact same quantity θ̂n.

Method of moments could be solved as systems of non-linear equations,

gn(θ) = 0. Over-identified GMM is generally framed as an M-estimation,

minθ∈ΘQn(θ), because the system of equations does not have an exact solution

in finite samples. Yet, the Probit example shows information can be lost when

minimizing Qn directly. This paper shows that some algorithms are robust to the

non-convexity of Qn by implicitly solving for gn(θ) = 0 rather than explicitly min-

imizing Qn. Under a rank condition, gradient-descent and Gauss-Newton (GN)

are globally convergent, with appropriate tuning. Newton-Raphson and quasi-

Newton can be unstable as they require inverting the potentially singular Hessian

ofQn. The result applies to over-identified and moderately misspecified models by

adapting the rank condition appropriately. For these models, there are no parame-

ters for which gn(θ) = 0 is feasible, even in large samples. As one may suspect, the

1⊗ is the kronecker product, vec vectorizes the matrix to a column vector, ∂θvec(G′
n(θ)) is the

Jacobian of the vectorized Jacobian.
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rank condition precludes local optima. The rank condition is invariant to smooth

one-to-one moderately non-linear reparameterization. When there is a single pa-

rameter and moment, the condition stated in this paper simply requires that the

scalar moment be strictly monotone. In the particular case where the moments

have an exact solution gn(θ) = 0, our rank conditions imply the so-called Polyak-

Ĺojasiewicz inequality; a popular relaxation of strong convexity in the machine

learning literature.

A simple MA(1) estimation from Gourieroux & Monfort (1996) illustrates this

analytically and numerically. The problem is non-convex: the scalar Hessian can

be positive, negative, or zero; yet the rank condition holds. As predicted, the rec-

ommended Gauss-Newton algorithm converges. Newton-Raphson provably di-

verges, and off-the-shelf optimizers can be unstable. Then, two empirical applica-

tions further confirm the predictions. The first application revisits the numerical

results of Knittel & Metaxoglou (2014) for estimating random coefficient demand

models. The same GN algorithm systematically converges from a wide range of

starting values. In contrast, R’s more sophisticated built-in optimizers can be inac-

curate and often crash without additional error-handling. The second application

estimates a small New Keynesian model with endogenous total factor productiv-

ity by impulse response matching. Matlab’s built-in optimizers have better error-

handling so that crashes are less problematic. Nonetheless, these optimizers’ per-

formance can be mixed and sensitive to reparameterizations whereas GN performs

well for nearly all starting values.

In all three applications, the GMM objective is non-convex at most values,

whereas the rank conditions hold at all or most values. Given the results presented

in the paper, this explains the good performance of GN relative to more commonly
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used methods. The main takeaway is that non-convexity need not be a deterrent to

structural estimation: simple algorithms can converge quickly and globally under

alternative conditions.

Structure of the chapter. Section 2.2 reviews optimization results for convex and

non-convex loss function and then provides the main results, illustrated in Section

2.4 with two empirical applications. Appendix B.1 gives the proofs to the main

results. Appendix B.4 gives R code to replicate the MA(1) example. Appendix B.5

provides additional simulation and empirical results. Appendix B.6 gives addi-

tional details about the methods found in the survey.

2.2 GMM ESTIMATION WITHOUT CONVEXITY

Let gn(θ) = 1/n
∑n

i=1 g(θ; xi) be the sample moments and Gn(θ) = ∂θgn(θ) their Ja-

cobian. Their population counterparts are g(θ) = E[g(θ; xi)] and G(θ) = ∂θg(θ). Wn

is a weighting matrix which, for simplicity, does not depend on θ – this excludes

continuously-updated estimations. The sample GMM objective function is:

Qn(θ) =
1

2
gn(θ)

′Wngn(θ),

and the goal is to find the global minimizer θ̂n of Qn in Θ, a compact and convex

subset of Rdθ . The population objective Q(θ) = g(θ)′Wg(θ), defined similarly using

the limit W of Wn, has a global minimizer θ†. Throughout, it will be assumed that

the sample Qn is continuously differentiable on Θ. More specifically, this paper

considers derivative-based optimizers of the form:

θk+1 = θk − γkPkGn(θk)
′Wngn(θk), (2.1)
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for k = 0, 1, . . . , some staring value θ0 ∈ Θ and a matrix Pk, called conditioning

matrix, assumed to be symmetric. The tuning parameter γk ∈ (0, 1] is called the

learning rate. There are several ways to motivate (2.1) as a minimization algorithm

in the context of GMM estimation. They are conceptually similar but implicitly rely

on a different set of assumptions. The first is to consider a quadratic approximation

of the GMM objective function Qn:

Qn(θ) ≃ Qn(θk) + ∂θQn(θk)(θ − θk) +
1

2γk
(θ − θk)

′∂2θ,θ′Qn(θk)(θ − θk),

here γk penalizes the quality of the quadratic approximation. For linear models,

such as OLS and IV regressions, Qn is quadratic so that γk = 1 is feasible. For

non-linear models, the approximation is inexact, and γk < 1 is generally required.

Minimizing the right-hand-side with respect to θ yields a Newton-Raphson (NR)

iteration: θk+1 = θk − γk[∂
2
θ,θ′Qn(θk)]

−1∂θQn(θk) with ∂θQn(θk) = Gn(θk)
′Wngn(θk)

and Pk = [∂2θ,θ′Qn(θk)]
−1. A quasi-Newton (QN) iterations replaces the Hessian ma-

trix ∂2θ,θ′Qn(θk) with an approximation computed sequentially over k. The most

popular QN software implementation is called BFGS. Importantly, the quadratic

approximation implicitly requires that Qn is strongly convex around θk that is

∂2θ,θ′Qn(θk) strictly positive definite so that (2.1) minimizes the quadratic approx-

imation. When the Hessian Hn is non-definite, (2.1) is not the minimizer.

Another way to motivate (2.1) is to consider a linear approximation of the mo-

ments and plug it into the GMM objective function:

gn(θ) ≃ gn(θk) +
1

γk
Gn(θk)(θ − θk),

Qn(θ) ≃
[
gn(θk) +

1

γk
Gn(θk)(θ − θk)

]′
Wn

[
gn(θk) +

1

γk
Gn(θk)(θ − θk)

]
,
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where now γk penalizes the quality of the linear approximation. Take the first

order condition in the last display to find (2.1) with Pk = (Gn(θk)
′WnGn(θk))

−1,

a Gauss-Newton (GN) iteration. The quadratic approximation requires the Hes-

sian Hn of Qn to be strictly positive definite at θk. A GN iteration minimizes the

linear approximation as long as the Jacobian Gn of gn has full rank at θk so that

Gn(θk)
′WnGn(θk) is strictly positive definite. Convexity is more challenging to sat-

isfy away from the solution since ∥gn(θk)∥ ≫ 0 can result in a non-definite Hessian

Hn(θk) = Gn(θk)
′WnGn(θk) + (gn(θk)

′Wn ⊗ Id)∂θvec[Gn(θk)
′], depending on the last

term. This is illustrated with a simple MA(1) example below. This suggests that

quadratic-based methods (NR, BFGS) and linear-based methods (GN) can behave

differently when Qn is globally non-convex.

Gradient-Descent (GD) can be motivated by either a linear or a quadratic ap-

proximation. The following summarizes the choice of Pk for each algorithm:

Table 2.1: Optimizers considered in (2.1)

1. Gradient-Descent (GD) Pk = Id,
2. Newton-Raphson (NR) Pk = [∂2θ,θ′Qn(θk)]

−1,
3. quasi-Newton (QN) Pk approximates [∂2θ,θ′Qn(θk)]

−1,
4. Gauss-Newton (GN) Pk = [Gn(θk)

′WnGn(θk)]
−1.

The following gives assumptions on the population moments used to describe

the large sample optimization properties. When these assumptions hold, the sam-

ple moments have similar properties, this is shown in Lemmas B.12, B.14.

Assumption 1. Suppose the observations xi are iid and: (i)Q(θ) = ∥g(θ)∥2W has a unique

minimum θ† ∈ interior(Θ), (ii) g(θ; xi) and g(θ) are continuously differentiable on Θ, (iii)

E[∥g(θ; xi)∥2] < ∞, for all θ ∈ Θ, E[∥G(θ; xi)∥2] < ∞, for all θ ∈ Θ, there exist a

L̄(·) ≥ 0 such that for any (θ1, θ2) ∈ Θ2, ∥G(θ1; xi)−G(θ2; xi)∥ ≤ L̄(xi)∥θ1− θ2∥, where

E[|L̄(xi)|2] < ∞, and E[L̄(xi)] < L, σmax[G(θ)] < σ < ∞, for all θ ∈ Θ (iv) for some
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RG > 0 such that BRG
(θ†) ⊂ Θ, σmin[G(θ)] > σ > 0 for all ∥θ − θ†∥ > RG, (v) Θ is

convex and compact, and (vi) Wn
p→ W , 0 < λW < λmin(W ) ≤ λmax(W ) < λW <∞.

Assumption 1 gives standard conditions for global and local identification as

well as uniform convergence of the sample moments. The quantity σmin[G(θ)] in

the local identification condition refers to the smallest singular value of G(θ).2 The

main Assumption 2 below will rely on the following quantities:

G(θ) =

1∫
0

G(ωθ + (1− ω)θ†)dω, G(θ1, θ2) =

1∫
0

G(ωθ1 + (1− ω)θ2)dω.

The matrix G(θ) measures the average Jacobian between the solution θ† and θ. The

main results of the paper rely on a mean-value identity, found in Lemma B.11,

which states that g(θ1)− g(θ2) = G(θ1, θ2)(θ1 − θ2) for any θ1, θ2 ∈ Θ.

Assumption 2. There exists 0 < ρ < σλW/2 such that, for all θ ∈ Θ, (a)

σmin[G(θ)
′WG(θ)] > ρσ, or (b) ∥G(θ)′WG(θ)(θ − θ†)∥ > ρσ∥θ − θ†∥.

Assumption 2 gives the main conditions used in this paper for global GMM

estimation of just and over-identified models. The factor ρ is assumed to be set,

without loss of generality, such that σmin[G(θ)] > σ under (a) and ∥G(θ)(θ − θ†)∥ >

σ∥θ−θ†∥ under (b) for σ found in Assumption 1, also set sufficiently small for these

normalizations to hold. Assumption 2 (a) replaces the convexity condition that 0 <

λH ≤ λmin[Hn(θ)] ≤ λmax[Hn(θ)] < λH < ∞ used to derive convergence results for

GD, NR and QN.3, which may not hold for GMM, as the MA(1) example illustrates.

Assumption 2 (a) implies Assumption 2 (b); the latter is the weaker condition.

Assumption 2 (a) implies that G(θ) has full rank for all θ, Assumption 2 (b) only
2For a rectangular matrix G of size n × m, m < n, the singular values are given by σj [G] =√
λj(G′G) ≥ 0, where λj are eigenvalues; G′G is a square matrix of size m×m.

3See Nesterov (2018, pp33-35), especially equations (1.2.25), (1.2.27) and Theorem 1.2.4 for GD.
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requires G(θ)′WG(θ) to be non-singular in the relevant direction (θ− θ†). For over-

identified models, both conditions (a) and (b) depend on the choice of weighting

matrix W . Indeed, unlike square matrices, the product of full rank rectangular

matrices does not automatically have full rank, and the weighting matrix changes

the way G and G are multiplied, the Assumption may or may not hold depending

on the choice of W .4 Assumption 2 is robust to one-to-one affine transformations

of the parameters, i.e. ϑ = A+Bθ withB invertible. Assumption 2 (a) is also robust

to moderately non-linear one-to-one transformations of the parameters ϑ = h(θ).

This will be shown in the next Section.

Assumption 1 implies that Assumption 2 (a) holds locally, i.e. over a neigh-

borhood of θ†. This is shown in Lemma B.13. The condition simply requires that

it holds globally rather than locally. Assumption 2 is related to the global and lo-

cal identification conditions. For instance, Assumption 2 (a) implies Assumption 1

(iv). Futher discussion of Assumption 2 will be provided in the next section. When

both Assumptions 1 and 2 holds, Assumption 2 also holds for the sample analogs:

Gn(θ) =

1∫
0

Gn(ωθ + (1− ω)θ̂n)dω, Gn(θ1, θ2) =

1∫
0

Gn(ωθ1 + (1− ω)θ2)dω,

with probability approaching 1, this is shown in Lemma B.14. The conditions can

be checked on the sample moments and their Jacobian numerically, when Assump-

tion 2 cannot be verified analytically. This is discussed further below.

Assumption 3. With probability approaching 1: Pk is such that:

0 < λP ≤ λmin(Pk) ≤ λmax(Pk) ≤ λP <∞.

4Take G(θ1)
′ = (1, 0) and G(θ2)

′ = (0, 1), both have full rank and yet G(θ1)
′G(θ2) = 0 is singular.
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Assumption 3 requires Pk to be finite and strictly positive definite. This is al-

ways the case for GD since Pk = Id, and holds for GN under Assumption 2 (a).

Under Assumption 2 (b), Assumption 3 may not hold for GN but remains valid

for GD. One can apply the Levenberg-Marquardt (LM) algorithm to GN by setting

Pk = (Gn(θk)
′WnGn(θk) + λId)

−1, and Assumption 3 holds since λP ≥ λ > 0, by

design.

2.2.1 Correctly-specified models

The first set of results concerns models that are correctly specified: the minimizer

θ̂n is such that gn(θ̂n) = Op(n
−1/2). The following Proposition shows that for any

tuning parameter γ, there exists a neighborhood where (2.1) is locally convergent.

Proposition 2 (Local Convergence). If Assumptions 1, 3 hold, then for γ ∈ (0, 1) small

enough, there exist Rn ≥ 0 and γ̃ ∈ (0, 1) such that with probability approaching 1:

∥θk+1 − θ̂n∥ ≤ (1− γ̃)∥θk − θ̂n∥ ≤ · · · ≤ (1− γ̃)k+1∥θ0 − θ̂n∥ (2.2)

for any ∥θ0 − θ̂n∥ ≤ Rn. For just-identified models, gn(θ̂n) = 0, Rn > 0 with probability

1. For over-identified models, gn(θ̂n) = Op(n
−1/2), Rn > 0 with probability approaching

1.

The analysis differs from standard results in the literature for non-linear sys-

tems of equations (e.g. Dennis & Schnabel, 1996; Nocedal & Wright, 2006, Ch11).

First, the system can be over-identified and is not required to have an exact solu-

tion. Both are particularly relevant to GMM estimations. When gn(θ) = 0 does

not have a solution, existing results do not apply. Second, the area of local con-

vergence Rn is tied to a) the choice of tuning parameter γ, and b) the size of the
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moments at the solution gn(θ̂n). This will be important for global convergence with

over-identified and misspecified models.

GN is often used for non-linear least squares estimations. Results also rely on a

full rank condition for the Jacobian around the solution to show that θk with γk = 1

solves a first-order condition asymptotically as k increases (e.g. Nocedal & Wright,

2006, Th10.1). Interpreting those results as a global convergence property requires

strong convexity, however.

For GN, the coefficient γ̃ ∈ (0, γ) is needed to have Rn > 0, as illustrated below.

Because of scaling, other methods may allow γ̃ > γ. A proof specialized to GN,

and the general case are given in Appendix B.1. For GN, Rn = min(RG, R̃n) is the

smallest of RG and:

R̃n = (1− γ̃/γ)
σ

L
√
κW

− 1

σ
√
λW

∥gn(θ̂n)∥Wn ,

where κW = λW/λW bounds the condition number of the weighting matrix Wn.

Having ∥gn(θ̂n)∥Wn ̸= 0 reduces the area of local convergence. For correctly speci-

fied models gn(θ̂n) = Op(n
−1/2) implies R̃n

p→ R̃ = (1 − γ̃/γ)σ/(
√
κWL) > 0. Note

that for GN, Proposition 2 holds for any choice of γ ∈ (0, 1). This is typically not

the case for other choices of Pk: GD is only locally convergent when γ is sufficiently

small. GD and GN iterations require the same inputsGn and gn, but the latter is pre-

ferred since it converges more quickly. As NR and QN iterations require an exact or

approximate Hessian, they are more costly than GD, GN.

The expression for R̃n illustrates that the choice of weighting matrix Wn mat-

ters. An ill-conditioned Wn, κW ≫ 1, can make local optimization challenging.

When the sample moments are highly correlated, the optimal weighting matrix

can be ill-conditioned. Using a diagonal weighting matrix, as commonly done in
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practice, may improve numerical stability.

2.2.1.1 Just-Identified Models

The Theorem below proves global convergence for γ ∈ (0, 1) sufficiently small.

Theorem 2 (Global Convergence, Just-Identified). Suppose gn(θ̂n) = 0, Assumptions

1, 2, 3 hold, then for γ small enough, there exist a γ ∈ (0, 1), and 0 < λ ≤ λ < ∞ such

that:

∥θk+1 − θ̂n∥ ≤ (1− γ)k+1

√
λ/λ∥θ0 − θ̂n∥, (2.3)

for any starting value θ0 ∈ Θ, with probability approaching 1.

The proof is given in Appendix B.1. The main steps are to show that for γ

sufficiently small, we have: i) Qn(θk+1) ≤ (1 − γ)2Qn(θk) for some γ ∈ (0, 1) under

the assumptions. Iterating on this inequality implies convergence of the objective

function: Qn(θk) ≤ (1 − γ)2kQn(θ0). The same assumptions also imply the norm

equivalence: ii) λ∥θ − θ̂n∥2 ≤ Qn(θ) ≤ λ∥θ − θ̂n∥2 for some 0 < λ ≤ λ < +∞.

Together, these two properties imply convergence of θk to θ̂n.

The main takeaway from Theorem 2 is that global convergence can be achieved

using any Algorithm which has Pk strictly positive definite for any k ≥ 0, with an

adequate choice of γ ∈ (0, 1), if Gn is everywhere non-singular. This assumption

does not imply the convexity ofQn. Note that the choice of γ depends on the choice

of algorithm, through Pk. Some methods are associated with faster convergence

than others, which is measured by γ.
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2.2.1.2 Over-Identified Models

Theorem 3 (Global Convergence, Over-Identified). Suppose gn(θ̂n) = Op(n
−1/2),

Assumptions 1, 2, 3, then for γ small enough, there exist γ ∈ (0, 1), C > 0, 0 < λ ≤ λ <

∞, and Cn = Op(1) such that with probability approaching 1:

∥θk − θ̂n∥2 ≤(1− γ)2k
λ+ C∥gn(θ̂n)∥Wn

λ− C∥gn(θ̂n)∥Wn

∥θ0 − θ̂n∥2 + Cn∥gn(θ̂n)∥2Wn
, (2.4)

for any θ0 ∈ Θ. Given this choice of γ, takeRn from Proposition 2. Since Cn∥gn(θ̂n)∥2Wn
≤

R2
n/2 with probability approaching 1, setting k = kn + j, j ≥ 0 implies:

∥θk − θ̂n∥ ≤ (1− γ̃)jRn,

where γ̃ ∈ (0, 1) is the local rate in Proposition 2 and kn ≥ 2 log(Rn)−log 2−log(d0n)
2 log(1−γ)

with

d0n = 2[λ− C∥gn(θ̂n)∥Wn ]
−1[∥gn(θ0)∥2Wn

− ∥gn(θ̂n)∥2Wn
].

Explicit formula for λ, λ, C, and Cn are given in the proof of the Theorem (Ap-

pendix B.1). Notice that larger values of ∥gn(θ̂n)∥Wn can degrade convergence. The

results for misspecified models further investigate the case where ∥gn(θ̂n)∥Wn does

not vanish in the limit.

Pen and pencil example. Take yi ∼ N (µ, σ2), the parameters of interest are θ =

(µ, σ2). Compute the sample moments µ̂n = (µ̂n1, µ̂n2, µ̂n4)
′, where µ̂n1 = yn, µ̂n2 =

σ̂2
n, and µ̂n4 = 1/n

∑n
i=1(yi − yn)

4, and let: gn(θ) = µ̂n − (µ, σ2, 3σ4). Set Wn =

Id and take θ† = (0, 1). A quick numerical computation reveals the population

objective function is non-convex: the eigenvalues of ∂2θ,θ′Q(θ) are (74, 2) at θ = (0, 1)

and (2,−7) at θ = (0, 1/2) – the Hessian is positive definite at the true value but

not everywhere. For starting values such that ∂2θ,θ′Qn(θ) is (near)-singular, NR and
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QN iterations can be erratic, as in the MA(1) example below. Nonetheless, some

calculations imply that:

G(θ)′ =


−1 0 0

0 −1 −6σ2

 , G(θ)′G(θ) =


1 0

0 1 + 18σ2{σ2 + σ†2}


is positive definite for any two θ = (µ, σ2), with θ† = (µ†, σ†2). In this simple

example, the Hessian of Qn can be singular, yet Assumption 2 (a) holds.

2.2.2 Misspecified models

So far, the results imply that fast global convergence is feasible under a rank condi-

tion for correctly specified models. In applications, misspecification can be a con-

cern so that understanding the robustness of the results above to non-negligible de-

viations from this baseline is empirically relevant. Recently, Hansen & Lee (2021)

studied the properties of iterated GMM procedures. Here the focus is on com-

puting a single GMM estimate. The following considers “moderate” amounts of

misspecification in the sense that:

plimn→∞Qn(θ̂n) := φ2 ≥ 0

exists and can be non-zero in the limit. When φ > 0, the degree of misspecification

is non-negligible asymptotically and the statistic n∥gn(θ̂n)∥2Wn
→ ∞ can diverge.

However, φ cannot be too large for the local and global convergence results to

hold as shown below. For simplicity, only Gauss-Newton will be considered in

the results. Also, since Gn cannot be full rank at θ = θ̂n when the model is both
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just-identified and misspecified,5 the results presented here solely consider over-

identified models.

For correctly specified models, a test for over-identifying restrictions can diag-

nose global convergence (Andrews, 1997, Sec3.3). For misspecified models, such

test would frequently reject in large samples. Then the issue is that, when the test

rejects, either 1) the optimizer has not found valid estimates, or 2) the model fits

the data poorly in some dimension(s). When Qn is globally convex, a given value

is the global solution if, and only if, it satisfies the first and second-order optimality

conditions.6 Without convexity, this only guarantees a local optimum. For mod-

erately misspecified models, Assumption 2 provides an alternative to convexity in

these settings.

Proposition 3 (Local Convergence, Misspecified). Suppose Assumptions 1, 2, 3 hold,

and φ is such that:

0 ≤ φ <
σ2λW

Lλ
1/2

W

. (2.5)

For any γ ∈ (0, 1), there exists γ̃ ∈ (0, γ), such that, with probability approaching 1, for

some Rn > 0, strictly positive, any ∥θ0 − θ̂n∥ ≤ Rn, and all k ≥ 0:

∥θk+1 − θ̂n∥ ≤ (1− γ̃)∥θk − θ̂n∥ ≤ · · · ≤ (1− γ̃)k+1∥θ0 − θ̂n∥. (2.2’)

Also, plimn→∞Rn = R > 0.

Rn in Proposition 3 takes the same form as in Proposition 2, (2.5) ensures that

5The solution θ̂n is s.t. Gn(θ̂n)
′Wngn(θ̂n) = 0, misspecification implies gn(θ̂n) ̸= 0, and since

Wn has full rank, it must be that Gn(θ̂n) is singular for just-identified models. For over-identified
models, gn(θ̂n) is in the null space of Gn(θ̂n)

′Wn, which allows Gn(θ̂n) to be full rank.
6The first is ∂θQn(θ̂n) = 0 and the second ∂2

θ,θ′Qn(θ̂n) positive semidefinite.
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the corresponding R is strictly positive in the limit; the neighborhood of conver-

gence is non-negligible asymptotically. Under identity weighting, Wn = Id, (2.5)

only depends on σ and L. For linear models, L = 0 implies that any φ ∈ [0,∞)

is feasible. For non-linear models, a larger L > 0 requires a smaller φ: increased

non-linearity requires milder misspecification. Smaller values of σ, which mea-

sures local identification, also require a smaller φ. In Proposition 2 with GN, any

rate of convergence γ ∈ (0, γ) can be used. When the model is misspecified, larger

values of φ ≥ 0 require γ̃ ∈ (0, γ) to be smaller, resulting in slower convergence.

Theorem 4 (Global Convergence, Misspecified). Suppose Assumptions 1, 2, 3 hold. If

φ is such that:

0 ≤ φ <
σ2λW

2Lλ
1/2

W

. (2.5’)

Then for γ small enough, there exist γ ∈ (0, 1) and Cn = Op(1), 0 < C, λ, λ < ∞, which

do not depend on φ, such that with probability approaching 1:

∥θk − θ̂n∥2 ≤(1− γ)2k
λ+ C∥gn(θ̂n)∥Wn

λ− C∥gn(θ̂n)∥Wn

∥θ0 − θ̂n∥2 + Cn∥gn(θ̂n)∥2Wn
. (2.4’)

Let ∆ = 1/2[σ2λW − 2Lλ
1/2

W φ] > 0. Suppose γ ∈ (0, 1) and φ ≥ 0 are such that:

∆γ2c2 + 2γc23/c1
[γc1/2− γ2c2]∆2

φ2 <

(
(1− ε)

σ

L
√
κW

− φ

σ
√
λW

)2

, (2.6)

for some ε ∈ (0, 1), where c1 = 2/3ρ2([σ/σ]2κ−1
W )2, c2 = LQ(σλ

1/2

W /[σ2λW ])2, c3 =

2σλ
1/2

W , κW = λW/λW , and LQ is the Lipschitz constant of ∂θQn. Take any γ̃ ∈ (0, εγ)
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and Rn from Proposition 3, set k = kn + j, j ≥ 0, then with probability approaching 1:

∥θk − θ̂n∥ ≤ (1− γ̃)jRn,

where kn ≥ 2 log(Rn)+log(δ)−log(d0n)
2 log(1−γ)

, with d0n as in Theorem 3, for some small enough δ ∈

(0, 1).

Another way to read Theorem 4 is that global convergence is not guaranteed

when the model is heavily misspecified and highly non-linear, i.e. both φ and L

are very large. Again, the choice of weighting matrix matters, as φ depends on W .

2.3 ASSUMPTION 2 AND ITS RELATION TO THE LITERATURE

Convexity, monotonicity and the Polyak-ojasiewicz condition. The following

briefly reviews some convexity conditions found in the literature and an impor-

tant relaxation called the Polyak-ojasiewicz (PL) condition. The latter has gathered

much attention in the machine learning literature in recent years. Because As-

sumption 2 is stated on population quantities, the following discussion will focus

on Q.

For general minimization of an objective Q, GD, NR and QN are globally con-

vergent for θ† if Q is µ-strongly convex, i.e. if for some µ > 0:

Q(θ2) ≥ Q(θ1) + ∂θQ(θ1)(θ1 − θ2) +
µ

2
∥θ1 − θ2∥2,

for all θ1, θ2 ∈ Θ. When Q is twice continuously differentiable it is strongly convex

if its HessianH(θ) = ∂2θ,θ′Q(θ) is strictly positive definite everywhere. In particular,
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for γ > 0 sufficiently small, we have:

Q(θk+1)−Q(θ†) ≤ (1− η)
(
Q(θk)−Q(θ†)

)
,

for some η ∈ (0, 1) which depends on γ, the choice of algorithm, i.e. Pk, and the

eigenvalues ofH . Iterating on this inequality indicates that the fit improves rapidly

from any starting value θ0: Q(θk+1) − Q(θ†) ≤ (1 − η)k+1
(
Q(θ0)−Q(θ†)

)
. Under

strong convexity, Q has a unique global minimizer and no local optima.

The literature has considered a number of relaxations of strong convexity un-

der which GD is globally convergent. This includes the so-called star convexity

condition due to Nesterov & Polyak (2006):

Q(θ†) ≥ Q(θ) + λ∂θQ(θ)(θ
† − θ) +

µ

2
∥θ† − θ∥2

for some µ ≥ 0 and λ = 1. This is similar-looking to strong convexity but only

involves the pairs (θ1, θ2) = (θ, θ†). For these functions, the convexity property

only holds on line segments toward θ†. Star convexity implies that θ† is the unique

global minimizer of Q. This condition can be further weakened to quasar convexity,

which allows for λ > 1 in the inequality above. Hinder et al. (2020, Figure 1) plot

examples of functions that satisfy these conditions but are not strongly convex.

Note that Assumption 2 is similarly stated for averages G of G on line segments

between θ and θ†.

Karimi et al. (2016), Guminov et al. (2017) showed that a number of relax-

ations of strong convexity imply the so-called Polyak-Łojasiewicz (PL) inequality,
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after Polyak (1963) and Lojasiewicz (1963), which requires that:

∥∂θQ(θ)∥2 ≥ µ
(
Q(θ)−Q(θ†)

)
, (PL)

for all θ ∈ Θ and some µ > 0. When Q satisfies the PL inequality, ∂θQ(θ) = 0

implies θ is globally optimal, i.e. Q(θ) = Q(θ†). The global minimizer may not

be unique, however, unlike strong convexity. If the PL inequality holds and ∂θQ

is Lipschitz continuous, it can be shown that for γ > 0 small enough: Q(θk+1) −

Q(θ†) ≤ (1 − η)
(
Q(θk)−Q(θ†)

)
for GD (Karimi et al., 2016, Th1). This does not

imply that θk+1 converges to θ†, however, unless the minimizer is unique. Because

strong convexity implies the PL inequality, Karimi et al. (2016) argue that the latter

holds locally over a larger area than strong convexity, predicting better optimiza-

tion performance. They also note that it is difficult to characterize which functions

satisfy the PL inequality. They show that Q(θ) = h(Aθ), with h strongly convex

and A a non-zero matrix, satisfies the PL inequality.

Closely related to the GMM setting, a smaller literature has considered condi-

tions for solving non-linear systems of equations of the form: g(θ) = 0, typically

with g and θ of the same dimension. An important reference is Dennis & Schnabel

(1996), who cast the problem as minimizing Q(θ) = ∥g(θ)∥2, similar to GMM, and

derive global convergence results to a local minimum under convexity conditions

(Theorems 6.3.3-6.3.4). Deuflhard (2005, Ch3) studies global convergence under

different assumptions. His related global convergence result, Theorem 3.7, implic-

itly assumes linearity of g in the proof, however. For just and under-determined

systems, several authors derived global convergence results under a strong mono-

tonicity condition:

(g(θ1)− g(θ2))
′(θ1 − θ2) ≥ µ∥θ1 − θ2∥2,
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with µ > 0 e.g. Solodov & Svaiter (2000), Polyak & Tremba (2020), Heid (2023).

Note that when g = ∂θF , then g is strongly monotone if, and only if, F is strongly

convex. Hence, global convergence under strong monotonicity is related to global

convergence under strong convexity of F . In that case, g is said to be cyclically

monotone (Rockafellar, 2015, p238). The results listed above do not consider prob-

lems where g(θ†) ̸= 0 which is particularly relevant to sample GMM estimations

with overidentifying moment restrictions.

In a companion paper, Forneron (2023) considers GMM estimation with poten-

tially non-smooth but correctly specified sample moments when only conditions

analogous to Assumption 1 are assumed. There are two important differences that

are inherant to that setting: 1) the sample Jacobian Gn is not defined, so that (2.1)

is not directly applicable, and 2) even with infinite data, (2.1) may not minimize Q

since the assumptions do not exclude non-global optima. Unlike here, the curse of

dimensionality appears in the converge results for ∥θk − θ̂n∥ but is much less pro-

nounced than worse-case lower bounds found in the literature for general purpose

global optimizers.

Relation between the different conditions. Narrowing to the GMM setting

specifically, the following shows that the PL inequality holds in the in the popu-

lation for correctly specified models under Assumption 2. A related result is derived

under misspecification.

As discussed above, Assumption 2 (a) implies Assumption 2 (b). The latter

confers most of the properties required for minimizing Q. It can be useful to re-

write the condition in terms of g: Assumption 2 (b) ∥G(θ)′W [g(θ)−g(θ†)]∥ > ρσ∥θ−

θ†∥. For correctly specified models, g(θ†) = 0 and G(θ)′Wg(θ) = ∂θQ(θ). The lower

bound implies that the only critical point is θ = θ†. This excludes local minima,
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maxima, and saddle points.7

Proposition 4 (Correct Specification). Suppose Assumptions 1 (ii), (iii), (vi), 2 (b) hold

and Q(θ†) = 0, then there exists strictly positive constants C1, C2, C3 such that for all

θ ∈ Θ:

(1) ∥∂θQ(θ)∥2 ≥ C1

(
Q(θ)−Q(θ†)

)
(2) C2∥θ − θ†∥2 ≤ Q(θ)−Q(θ†) ≤ C3∥θ − θ†∥2.

Proposition 4 shows that Assumption 2 (b), together with bounds on W and

Lipschitz continuity of G imply the PL inequality (1) for Q. In addition, (2) implies

global identification and is needed to derive the convergence rate of θk. Strong

convexity also implies (1) and (2).

Proposition 5. Suppose W is invertible, Q(θ†) = 0. The following holds: 1) If Q satisfies

the PL inequality with µ > 0 and C2∥θ − θ†∥2 ≤ Q(θ)−Q(θ†) for C2 > 0 and all θ ∈ Θ,

then Assumption 2 (b) holds. 2) If Q is quasar-convex with µ > 0, then Assumption 2 (b)

holds.

Proposition 5 gives a condition under which quasar-convexity and the PL in-

equality imply Assumption 2 (b). On compact sets, Assumption 1 (i), (iii), (iv)

together imply a C2 > 0 exists for correctly specified models. Assumption 2 (b)

does not imply quasar-convexity.8 The following considers strong monotonicity

and introduces a strong injectivity condition:

∥g(θ1)− g(θ2)∥ ≥ µ∥θ1 − θ2∥.
7A critical point is a θ such that ∂θQ(θ) = 0. Assuming Q is twice differentiable, it is a local

minimum if ∂2
θ,θ′Q(θ) is positive semidefinite, maximum if ∂2

θ,θ′Q(θ) is negative semidefinite, and
a saddle point if ∂2

θ,θ′Q(θ) is indefinite, i.e. has both positive and negative eigenvalues.
8Quasar-convexity implies (θ − θ†)′G(θ)′WG(θ)(θ − θ†) ≥ µ

2λ∥θ − θ†∥2. This is more restrictive
than Assumption 2 (b).
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It can be shown that the strong injectivity property holds on compact convex sets

under the Gale-Nikaidô-Fisher-Rothenberg conditions: det(G(θ)) > 0 and G(θ) is

positive quasi-definite, for all θ ∈ Θ, where det is the determinant.9

Proposition 6 (Just-Identified). 1) IfAg is strongly monotone for some invertible matrix

A and µ > 0, then Assumption 2 (b) holds. 2) If g is strongly injective with µ > 0, then

Assumption 2 (b) holds.

Figure 2.1: Relationship between conditions for correctly specified
models

strong convexity ⇒ star convexity ⇒ quasar convexity

⇓

Assumption 2 (a) ⇒ Assumption 2 (b) ⇐ strong injectivity

⇕ ⇑

(PL) + QLB strong monotonicity

Legend: Relations hold when Q(θ†) = 0. QLB = Quadratic Lower Bound, i.e.
C2∥θ − θ†∥2 ≤ Q(θ)−Q(θ†) for some C2 > 0. Relations with strong monotonicity
and strong injectivity are for just-identified models.

Figure 2.1 summarizes the results of Propositions 4, 5, 6. Since Qn(θ̂n) = 0 for

just-identified models that are correctly specified, the relationship also applies in

the finite samples problems where these conditions are met. When g and θ are

scalar, Assumption 2 implies strict monotonicity, g is either increasing or decreas-

ing, but does not imply convexity of Q, however, as the MA example below will

illustrate. Also, Assumptions 2 (a) and (b) are equivalent in the scalar case so that

strong, star, and quasar convexity imply Assumption 2 (a) in that particular set-

ting.
9G is positive quasi-definite if, and only if, G+G′ is positive definite. See Fisher (1966), Rothen-

berg (1971); and Komunjer (2012) for a discussion and alternative conditions.
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It remains to determine if Assumption 2 (b) is minimal for global convergence,

or if can be weakened further. The following condition is necessary for GD and

other gradient-based optimizers of the form (2.1) to be globally convergent:

∂θQ(θ) = 0 ⇔ θ = θ†. (N)

The following shows that, under smoothness and local identification conditions,

(N) implies Assumption 2 (b).

Proposition 7. Suppose condition (N) and Assumption 1 (ii)-(vi) hold, then Assumption

2 (b) holds on any compact convex set containing θ†.

Proposition 7 implies that given standard regularity conditions, Assumption 2

(b) is a necessary condition on compact sets. The case of overidentified and mis-

specified models, is more complicated as the following shows that the equivalence

between the PL inequality and Assumption 2 (b) is not automatic.

Proposition 8 (Misspecification). Suppose Assumptions 1 (ii), (iii), (vi), 2 (b) hold and

Q(θ†) = φ > 0, then there exists strictly positive constants C2, C3, C4 such that for all

θ ∈ Θ:

(1) ∥∂θQ(θ)∥ ≥
(
ρσ −√

φλ
1/2

W L
)
∥θ − θ†∥

(2) (C2 − C4
√
φ)∥θ − θ†∥2 ≤ Q(θ)−Q(θ†) ≤ (C3 + C4

√
φ)∥θ − θ†∥2,

where C2, C3 are the same as in Proposition 4 and L is the Lipschitz constant of G from in

Assumption 1 (iii). If in addition ρσ −
√
φλWL > 0, then for all θ ̸= θ†:

(1′) ∥∂θQ(θ)∥2 ≥
(ρσ −

√
φλWL)

2

C3 + C4
√
φ

(
Q(θ)−Q(θ†)

)
.
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Proposition 8 (1) is only informative when the amount of misspecification is

moderate, i.e. φ < ρ2σ2/[λWL
2]. When this holds, there are no local optima besides

θ†. It also implies the PL inequality (1’) holds. To recover convergence for θ, the

lower bound in (2) should be informative which further requires
√
φ < C2/C4.10

The degree of non-linearity - measured by L - and the choice of weighting matrix

- measured by λW , λW and φ - constrain the amount of misspecification permitted

to get informative bounds. For correctly specified overidentified models, Qn(θ̂n) =

op(1) implies that (1’) and (2) hold asymptotically and are informative.

Further characterization of Assumption 2 (Just-Identified). Like star-convexity,

Assumption 2 is stated relative to the unknown θ†. The following Proposition gives

several conditions under which Assumption 2 (a) holds and properties implied by

these conditions.

Proposition 9. (Sufficient Conditions) Consider the following conditions:

(a) σmin[G(θ1, θ2)] > σ > 0, for all θ1, θ2 ∈ Θ, (b) for all θ ∈ Θ, G(θ) = US(θ)V for

U, V invertible and S(θ) symmetric with 0 < λS < λmin[S(θ)] < λS < ∞, for all θ, (c)

g(θ) = ∂θF (θ), for all θ ∈ Θ, where F : Θ → R is twice continuously differentiable,

strongly convex.

The following holds: (1) (c) ⇒ (b) ⇒ (a) ⇒ Assumption 2 (a) holds; (2) (a) implies g(·)

is one-to-one; (3) if (a) holds, there exists a reparameterization h(·) = ψ ◦ g ◦ ϕ(·) with ϕ

one-to-one and ψ affine, such that 1/2h(θ)′Wh(θ) is strongly convex.

Condition (a) does not require knowledge of θ† and implies that g(·) is one-

to-one. The latter is often assumed for indirect inference.11 Condition (a) also

10The derivations give the following bounds C2 = 1/2 ρ2σ2

σ2λW
and C4 = λ

1/2

W L so that the condition

reads
√
φ < 1/2ρ2σ2[σ2λ

3/2

W L]−1. It is possible to relax this condition at the cost of more complicated
derivations using a combination of global and local convergence arguments.

11See e.g. Gourieroux et al. (1993), Assumption (A4).
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implies strongly injectivity with µ = σ. When the Jacobian can be linearly rear-

ranged into a symmetric positive definite matrix S(θ) = U−1G(θ)V −1, then con-

dition (a) holds. These problems can be thought of as implicitly convex in the

special case where where S is the second derivative of a convex function. For a

given θ ∈ Θ, decomposition (c) always exists: the singular value decomposition

gives G(θ) = U(θ)S(θ)V (θ) where U(θ), V (θ) are unitary and S(θ) is diagonal with

positive entries. A lesser known results, due to Frobenius (1910) shows that any

square matrix can be written as the product of two real symmetric matrices; here

G(θ) = S1(θ)S2(θ). The Jordan normal form of G(θ) can be used to compute this

factorization (Bosch, 1986). If G(θ) is invertible, for all θ ∈ Θ, and U, V or one of

S1, S2 do not vary with θ, in the singular value or Frobenius decomposition, then

(c) holds. Under condition (b), g is cyclically monotone, and thus strongly mono-

tone.

Proposition 10. (Reparameterization) Take h : U → Θ, one-to-one, continuously

differentiable on U compact and convex, with 0 < σh ≤ minu∈U σmin[∂uh(u)] ≤

maxu∈U σmax[∂uh(u)] ≤ σh < ∞. Let u† = h−1(θ†), the minimizer of Q ◦ h. Let

σ = supθ∈Θ σmax[G(θ)] and:

L1,h = sup
u∈U

∥∂uh(u)− ∂uh(u
†)∥

L2,h = sup
u∈U ,ω∈[0,1]

∥h(ωu+ (1− ω)u†)− ωh(u)− (1− ω)h(u†)∥.

If Assumption 2 (a) holds for g and σ > [L1,hσ + L2,hLσh]/σh, where L is the Lipschitz

constant of G, then Assumption 2 (a) holds for g ◦ h. In particular, if h = Au+ b is affine

with A invertible then L1,h = L2,h = 0 and Assumption 2 (a) holds for g ◦ h.

Strong convexity is preserved by affine transformations and reparameteriza-
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tion that satisfy particular component-wise monotonicity constraints on the repa-

rameterization (e.g. Boyd & Vandenberghe, 2004, Sec3.2). Proposition 10 shows

that Assumption 2 is also preserved by affine transformations and moderately non-

linear one-to-one reparameterizations h. Hencre, optimization should be locally

robust to the choice of parameterization. Statements for overidentified models can

be found in Propositions B.216, B.217.

Iteration depedent choice of learning rate γk. The results are stated for a fixed

globally convergent choice of learning rate. In practice, adaptive choices of γk are

common, using a line search for instance. If the adaptive algorithm is tuned to sat-

isfy the requirements for global convergence, then it is also globally convergent.

To preserve convergence properties, additional tuning parameters are typically in-

volved (Nocedal & Wright, 2006, Ch3.1). A backtracking line search, a simple and

popular way to set the learning rate (Nocedal & Wright, 2006, Ch3.1), is used as

a benchmark comparison for the fixed learning rate used in the applications. It is

described below.

Algorithm 2 Backtracking Line Search for Gauss-Newton
Tuning Parameters: Initial γinit, ρ ∈ (0, 1), c ∈ (0, 1).
Inputs : Previous iterate θk, moments gn(θk), Jacobian Gn(θk)
Compute : Search direction: pk = (Gn(θk)

′WnGn(θk))
−1Gn(θk)

′Wngn(θk),
Jk = Gn(θk)

′Wngn(θk).
Set : γk = γinit and θk+1 = θk − γkpk
while Qn(θk+1) > Qn(θk)− cγkJ

′
kpk do

Set : γk = ργk and θk+1 = θk − γkpk
end
Output : New iterate θk+1, Learning Rate γk.

Setting Qn(θk+1) = +∞ if θk+1 ̸∈ Θ is outside the bounds.12 This can occur

when γinit is too large to be globally convergent. By construction, J ′
kpk ≥ 0 so that

12Another approach is to project θk+1 inside Θ when γk is too large.
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the final γk decreases the value of the objective function. The while loop terminates

once the so-called Armijo condition is met:13 Qn(θk+1) ≤ Qn(θk)−cγkJ ′
kpk. When the

rank conditions below hold, the termination criterion is feasible for any θk ̸= θ̂n if

c is sufficiently small.14 Having θk = θ̂n implies pk = 0; the condition holds for any

γk ∈ (0, 1]. A common choice is c = 10−4, γinit = 1, ρ = 0.8. These were used in all

examples.

2.4 APPLICATIONS

2.4.1 A pen and pencil example: the MA(1) model

Now, to build intuition, consider a simple MA(1) process:

yt = et − θ†et−1, et
iid∼ N (0, 1), θ† ∈ (−1, 1),

for t = 1, . . . , n. θ† is the parameter of interest. Set p ≥ 1, following Gourieroux &

Monfort (1996, Ch4.3), θ† is estimated by matching coefficients from an auxiliary

AR(p) model:

yt = β1yt−1 + · · ·+ βpyt−p + ut.

For p = 1, β̂1
p→ −θ†/(1 + θ

†2) defines the moment condition:

gn(θ) = β̂1 +
θ

1 + θ2
,

13See Nocedal & Wright (2006, p33), Nesterov (2018, pp28-29) for discussions.
14Consider, for instance, just-identified models: in Theorem 2 below, it is shown that Qn(θk+1) ≤

(1 − γ)2Qn(θk), for any θk ∈ Θ, when γ ∈ (0, 1) small enough for some γ ∈ (0, γ). The rank
conditions further imply that Qn(θk) and J ′

kpk are proportional. So the Armijo condition is feasible
if c is small enough.
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with Jacobian Gn(θ) = (1 − θ2)/(1 + θ2)2 > 0 for any θ ∈ (−1, 1) and Gn(θ) = 0 for

θ ∈ {−1, 1}. It has full rank on any interval of the form [−1 + ε, 1 − ε], ε ∈ (0, 1).

However, Figure 2.2 shows that the Hessian ∂2θ,θQn(θ) can be positive, negative,

or equal to zero depending on the value of θ – Qn is non-convex, especially when

gn(θ) is large. Now notice that:

gn(θ) = ∂θFn(θ) where Fn(θ) = β̂1θ +
1

2
log(1 + θ2)

which not a GMM objective but is nevertheless convex on [−1, 1], strongly convex

on any [−1 + ε, 1 − ε], ε ∈ (0, 1). The two, Fn and Qn, are minimized at the same

solution θ̂n. From a statistical perspective, Qn and Fn define identical M-estimates.

However, one involves a convex minimization while the other does not. Notice

that because the gradient of Fn is gn, and its Hessian is Gn, a NR update for Fn co-

incides with a GN update for gn. Implicitly, GN minimizes the convex Fn – whereas

NR explicitly minimizes the non-convex Qn. This change of loss function from Qn

to Fn is only illustrative of the connection between the two sets of conditions in

the scalar case. It would be difficult to implement with multiple coefficients and is

generally not feasible for overidentified models.

Table 2.2 shows the search paths for NR and GN with a fixed γ = 0.1 as well as

R’s built-in optim’s BFGS implementation and the bound-constrained L-BFGS-B. NR

diverges, because the objective is locally concave at θ0 = −0.6. This is surprising

given how close θ0 is to the true value θ†. GN converges steadily from the same

staring value to θ̂n. Although the GMM objective Qn is locally convex around

θ̂n which is useful for local optimization, the corresponding neighborhood can be

fairly small from a practical standpoint. BFGS is more erratic, especially when θk ≃

−0.5, i.e. k = 1, leading to a search outside the unit circle (k = 2), before reaching



77

an area where the iterations are better behaved (k = 3 onwards). While here this

is not too problematic, the objective function is well defined outside the bounds,

this is more concerning in applications where the model cannot be solved outside

the bounds – this is illustrated in Section 2.4.2. A natural solution is to introduce

bounds using L-BFGS-B. The search, however, remains somewhat erratic as seen in

the Table. Compare these to BFGS⋆ and L-BFGS-B⋆ which minimize Fn, instead of

Qn, using the same optim. Like GN, they steadily converge to θ̂n.

Figure 2.2: MA(1): illustration of non-convexity and the rank condi-
tion

Legend: simulated sample of size n = 200, θ† = −1/2, gn(θ) = β̂1 − θ/(1 + θ2),
Wn = Id. The GMM objective (panel a) is non-convex but the sample moments
(panel b) satisfy the rank condition.

For p = 12, the model becomes over-identified, and the condition for global

convergence requires Gn(θ1)
′WnGn(θ2) to be non-singular for all pairs (θ1, θ2) ∈

Θ×Θ. For just-identified models, this amounts to Gn(θ) non-singular for all θ ∈ Θ.

Figure B.5.2 in Appendix B.5 illustrates, similar to Figure 2.2, thatQn is non-convex

and that the rank condition holds for Θ = [−1 + ε, 1 − ε]. Fn is no longer defined

because of over-identification. Table 2.2 shows that NR, BFGS and L-BFGS-B all fail
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to converge from θ0 = 0.95, a starting value with negative curvature.15 Compare

with GN, which steadily converges to θ̂n. Starting closer to the solution, BFGS and

L-BFGS-B also fail to converge using θ0 = 0.6; GN remains accurate (not reported).

R codes using p = 12, Wn = Id can be found in Appendix B.4.

Table 2.2: MA(1): search paths for NR, GN, BFGS, and L-BFGS-B

k 0 1 2 3 4 5 6 7 . . . 99 Qn(θ99)
p = 1

NR -0.600 -0.689 -0.722 -0.749 -0.772 -0.793 -0.811 -0.828 . . . -0.993 0.038
GN -0.600 -0.560 -0.529 -0.504 -0.484 -0.466 -0.451 -0.438 . . . -0.338 7 · 10−8

GN-BACK -0.600 -0.202 -0.326 -0.338 -0.338 -0.338 -0.338 -0.338 . . . -0.338 7 · 10−8

BFGS -0.600 -0.505 4.425 -0.307 -0.359 -0.338 -0.337 -0.337 . . . -0.337 7 · 10−8

L-BFGS-B -0.600 -0.505 1.000 -0.455 -0.375 -0.318 -0.341 -0.339 . . . -0.338 7 · 10−8

BFGS⋆ -0.600 -0.462 -0.286 -0.345 -0.340 -0.338 -0.338 -0.338 . . . -0.338 7 · 10−8

L-BFGS-B⋆ -0.600 -0.462 -0.286 -0.345 -0.339 -0.338 -0.338 -0.338 . . . -0.338 7 · 10−8

p = 12
NR 0.950 0.956 0.961 0.965 0.969 0.972 0.975 0.978 . . . 1.000 4.786
GN 0.950 0.890 0.860 0.834 0.810 0.787 0.763 0.740 . . . -0.623 0.101

GN-BACK 0.950 0.350 -0.089 -0.478 -0.591 -0.616 -0.616 -0.623 . . . -0.626 0.101
BFGS 0.950 -8.290 -8.279 -8.267 -8.256 -8.244 -8.233 -8.221 . . . -6.979 0.397

L-BFGS-B 0.950 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 . . . -1.000 1.7

Legend: simulated data with sample size n = 200, θ† = −1/2. For p = 1,
gn(θ) = β̂1 − θ/(1 + θ2). For p = 12, gn(θ) = β̂n − β(θ) where β(θ) is the
p-limit of the AR(p) coefficients, evaluated at θ. Wn = Id. The solutions are
θ̂n = −0.339 (p = 1) and θ̂n = −0.626 (p = 12). NR = Newton-Raphson, GN =
Gauss-Newton, GN-BACK = Gauss-Newton with backtracking line search (Algo-
rithm 2). The learning rate is γ = 0.1 for NR and GN. BFGS = R’s optim, L-BFGS-B =
R’s optim with bound constraints θ ∈ [−1, 1]. BFGS⋆ and L-BFGS-B⋆ apply the same
optimizers to Fn instead of Qn. Additional results for GN using a range of values
γ ∈ {0.1, 0.2, 0.4, 0.6, 0.8, 1} can be found in Appendix B.5.1, Figures B.5.1, B.5.4.

2.4.2 Estimation of a Random Coefficient Demand Model Revisited

The following revisits the results for random coefficient demand estimation in

Knittel & Metaxoglou (2014) with the cereal data from Nevo (2001).16 This is

15L-BFGS-B relies on projection descent which maps search directions outside the unit circle to −1
or 1 where ∂θQn(−1) = ∂θQn(1) = 0, a stationary point for (2.1).

16It available in the R package BLPestimatoR (Brunner et al., 2017). The data consists of 2,256
observations for 24 products (brands) in 47 cities over two quarters in 94 markets. The specification
is identical to Nevo’s, with cereal brand dummies, price, sugar content (sugar), a mushy dummy
indicating whether the cereal gets soggy in milk (mushy), and 20 IV variables.
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a non-linear instrumental variable regression with sample moment conditions:

gn(θ, β) = 1
n

∑
j,t zjt[δjt(θ) − x′tjβ], where zjt are the instruments, xjt the linear re-

gressors in market j at time period t. The 8 parameters of interest are the random

coefficients θ,17 which enter δjt, recovered from market shares sjt using the fixed

point algorithm of Berry et al. (1995). The 25 linear coefficients β are nuisance pa-

rameters concentrated out by two-stage least squares for each θ. The replication

sets the maximum number of iterations for the contraction mapping to 20000 and

the tolerance level for convergence to 10−12. This is important for the optimiza-

tion to be well-behaved; see e.g. Brunner et al. (2017), Conlon & Gortmaker (2020).

The range of starting values used here is much wider than in these papers,18 which

explains why optimizers are more prone to crashing here than in their replications.

Table 2.3 and Figure 2.3 compare the performance of quasi-Newton (BFGS),

Nelder-Mead (NM), Simulated-Annealing (SA), and Nelder-Mead after Simulated-

Annealing (SA+NM), using R’s default optimizer optim, with Gauss-Newton (GN)

for 50 different starting values.19 As reported in Knittel & Metaxoglou (2014), op-

timization can crash often.20 Crashes could be avoided using error handling (try-

catch statements). However, this may not be enough to produce accurate estimates

as the next application will illustrate.21 Only GN and BFGS systematically produce

accurate estimates, but BFGS crashes 60% of the time. Derivative-free optimizers,

178 parameters are the unobserved standard deviation and the income coefficient on the constant
term, price, sugar, and mushy.

18Conlon & Gortmaker (2020, p25) draw “starting values from a uniform distribution with sup-
port 50% above and below the true parameter value.”

19The solution of the contraction mapping is not well defined for all values in Θ, so we use the
first 50 values produced by the Sobol sequence such that δjt is finite for all j, t.

20The optimizers will crash when the fixed point algorithms fail to return finite values. This is
typically the case when the search direction was poorly chosen at the previous iteration.

21Conlon & Gortmaker (2020) illustrate that modifications to the fixed-point algorithm and spe-
cific optimizer implementations to handle near-singularity of the Hessian can also improve perfor-
mance for BFGS.
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Table 2.3: Demand for Cereal: performance comparison

STDEV INCOME objsconst. price sugar mushy const. price sugar mushy crash

TRUE
est 0.28 2.03 -0.01 -0.08 3.58 0.47 -0.17 0.69 33.84 -se 0.11 0.76 0.01 0.15 0.56 3.06 0.02 0.26 -

avg 0.28 2.03 -0.01 -0.08 3.58 0.47 -0.17 0.69 33.84
GN std 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0

avg 0.28 2.03 -0.01 -0.08 3.58 0.47 -0.17 0.69 33.84
GN-BACK std 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0

BFGS
avg 0.28 2.03 -0.01 -0.08 3.58 0.47 -0.17 0.69 33.84 30std 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00

NM
avg 0.32 0.35 -0.08 -0.88 3.94 -2.64 -0.10 1.26 628.44 4std 1.37 8.91 0.09 3.08 3.63 10.74 0.23 5.13 772.23

SA
avg 0.87 -0.58 -0.72 -0.00 0.01 0.33 1.64 -1.16 1.46 · 105 3std 7.68 8.66 3.58 7.88 6.67 6.97 3.65 7.92 2.36 · 105

SA+NM
avg 0.43 -0.88 -0.06 -0.84 4.15 -2.18 -0.15 0.71 506.44 3std 0.61 9.45 0.12 2.25 3.56 11.48 0.19 5.06 1250.65

Legend: Comparison for 50 starting values in [−10, 10]× · · · × [−10, 10]. Avg, Std:
sample average and standard deviation of optimizer outputs. TRUE: full sample
estimate (est) and standard errors (se). Objs: avg and std of minimized objective
value. crash: optimization terminated because the objective function returned an
error. GN Gauss-Newton with γ = 0.1, k = 150 iterations for all starting values.
GN-BACK Gauss-Newton with backtracking line search, k = 150. Additional re-
sults for GN using a range of values γ ∈ {0.1, 0.2, 0.4, 0.6, 0.8, 1} can be found in
Appendix B.5.2, Table B.5.1.

NM, SA, and SA+NM, can produce inaccurate estimates.

Figure 2.3: Demand for Cereal: distribution of minimized objective
values

Legend: Comparison for 50 starting values. Minimized objective values for non-
crashed optimizations. Objective values are truncated from above at Qn(θ) = 150.
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Figure 2.4: Demand for Cereal: Gauss-Newton iterations for 5 start-
ing values

Legend: 150 GN iterations for 5 starting values in [−10, 10]× · · · × [−10, 10]. Panel
b) horizontal grey line = full sample estimate.

Figure 2.4, illustrates the convergence of GN for the first 5 starting values. In

line with the predictions of Theorem 3, though Qn is non-convex, GN iterations

steadily converge to the solution. This type of “Gauss-Newton regression” is

related to Salanié & Wolak (2022) who compute two-stage least-squares for lin-

earized BLP.

2.4.3 Innovation, Productivity, and Monetary Policy

The second application revisits Moran & Queralto (2018)’s estimation of a model

with endogenous total factor productivity (TFP) growth (see Moran & Queralto,

2018, Sec2, for details about the model). They estimate parameters related to

Research and Development (R&D) by matching the impulse response function

(IRF) of an identified R&D shock to R&D and TFP in a small-scale Vector Auto-

Regression (VAR) estimated on U.S. data.

The parameters of interest are θ = (η, ν, ρs, σs) which measure, respectively, the

elasticity of technology creation to R&D, R&D spillover to adoption, the persis-

tence coefficient and size of impulse to the R&D wedge. The sample moments are

gn(θ) = ψ̂n−ψ(θ), ψ̂n and ψ(θ) are the sample and predicted IRFs, respectively. The
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latter is computed using Dynare in Matlab. To minimizeQn, the authors use Sims’s

CSMINWEL22 algorithm with a reparameterization which bounds the coefficients.23

Although this type of reparameterization is commonly used, the Jacobian is singu-

lar at the boundary; this matters for both local and global convergence, according

to the results.

Table 2.4: Impulse Response Matching: performance comparison

η ν ρs σs objs crash η ν ρs σs objs crash
TRUE est 0.30 0.29 0.39 0.17 4.65 - 0.30 0.29 0.39 0.17 4.65 -

WITHOUT REPARAMETERIZATION WITH REPARAMETERIZATION

avg 0.30 0.29 0.39 0.17 4.65 0.30 0.29 0.39 0.17 4.65
GN std 0.00 0.00 0.00 0.00 0.00 2 0.00 0.00 0.00 0.00 0.00 5

avg 0.30 0.29 0.39 0.17 4.65 0.30 0.29 0.39 0.17 4.65
GN-BACK std 0.00 0.00 0.00 0.00 0.00 1 0.00 0.00 0.00 0.00 0.00 2

BFGS
avg 0.12 0.10 -0.34 5.42 2 · 104 0 0.37 0.21 0.07 0.14 104.08 0std 0.56 0.20 0.47 4.77 2 · 104 0.32 0.14 0.65 0.06 136.63

CSMINWEL
avg 0.36 -0.00 0.27 0.15 46.42 0 0.62 0.20 0.07 0.14 133.76 0std 0.24 1.54 0.33 0.19 183.74 0.39 0.22 0.76 0.08 123.32

NM
avg 0.47 -5.27 0.43 0.16 14.81 0 0.48 0.26 0.37 0.39 1 · 103 0std 0.54 37.28 0.11 0.05 34.32 0.33 0.16 0.34 1.68 9 · 103

SA
avg 1.39 -2.08 0.48 0.09 75.21 0 0.60 0.21 0.44 1.26 7 · 103 0std 2.23 3.59 0.19 0.09 91.35 0.46 0.30 0.74 3.62 2 · 104

SA+NM
avg 0.97 -84.27 0.41 0.09 66.53 0 0.61 0.21 0.43 1.08 5 · 103 2std 2.01 124.00 0.22 0.09 79.78 0.45 0.29 0.71 3.33 2 · 104

lower bound 0.05 0.01 -0.95 0.01 - - 0.05 0.01 -0.95 0.01 - -
upper bound 0.99 0.90 0.95 12 - - 0.99 0.90 0.95 12 - -

Legend: Comparison for 50 starting values. TRUE: full sample estimate (est).
Objs: avg and std of minimized objective value. crash: optimization terminated
because objective returned error. Lower/upper bound used for the reparameteri-
zation. GN run with γ = 0.1 for k = 150 iterations for all starting values. Standard
errors were not computed in the original study. GN-BACK Gauss-Newton with
backtracking line search, k = 150. Additional results for GN, using a range of val-
ues γ ∈ {0.1, 0.2, 0.4, 0.6, 0.8, 1} can be found in Appendix B.5.3, Tables B.5.2, B.5.3

In the original paper, the authors initialize the estimation at θ0 =

22Details about CSMINWEL and code can be found at: http://sims.princeton.edu/yftp/
optimize/.

23The replication uses the mapping θj = θj +
θj−θj

1+exp(−ϑj)
, where each ϑj is unconstrained. The

original study relied on θj = 1/2(θj +θj)+1/2(θj −θj)
ϑj√
1+ϑ2

j

, which we found to make optimizers

very unstable.

http://sims.princeton.edu/yftp/optimize/
http://sims.princeton.edu/yftp/optimize/
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(η0, ν0, ρs0, σs0) = (0.20, 0.20, 0.30, 0.10), very close to θ̂n. Here, 50 starting val-

ues are generated within the bounds in Table 2.4. The model is estimated using

CSMINWEL and the same set of optimizers used in the previous replication. Table

2.4 reports the results with and without the non-linear reparameterization. Similar

to the MA(1) model with p = 12, without the reparameterization, several optimiz-

ers return values outside the parameter bounds, which motivates the constraints

in these cases. GN correctly estimates the parameters for all starting values but

crashes twice for starting values for which both η and ν are close to their lower

bounds where the Jacobian is nearly singular. With the reparameterization, GN

crashed more often, five times in total, but is otherwise accurate. With backtrack-

ing, crashes are fewer. The crashes occur at a value strictly within the parameter

bounds for which Dynare cannot solve the model and returns an error. There is no

obvious way to modify GN to avoid this problem.

Figure 2.5: Impulse Response Matching: distribution of minimized
objective values

Legend: Comparison for 50 starting values. Minimized objective values for non-
crashed optimizations. Objective values are truncated from above at Qn(θ) = 150.
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Figure 2.6: Impulse Response Matching: Gauss-Newton iterations
for 5 starting values

Legend: 150 GN iterations for 5 non-crashing starting values. Panels a,c) value of
the objective function at each iteration, Panels b,d) coefficient η at each iteration;
horizontal grey line = full sample estimate.

The other two gradient-based optimizers, BFGS and CSMINWEL, never crash

because of better error handling in Matlab. They produce valid estimates less often

than GN. Figure 2.5 illustrates that CSMINWEL is sensitive to reparameterization.

Likewise, derivative-free methods can be inaccurate, as illustrated in Table 2.4 and

Figure 2.5; some crashes occur despite Matlab’s error handling. Finally, Figure

2.6 shows 5 optimization paths for which GN does not crash with and without

the reparameterization. They are nearly identical. Tables B.5.2, B.5.3 in Appendix

B.5.3 gives additional results for larger values of γ ∈ (0, 1], plus results with error

handling and the global step from Forneron (2023).

2.5 CONCLUSION

Non-convexity of the GMM objective function is an important challenge for struc-

tural estimation, and the survey highlights how practitioners approach this issue.

This chapter considers an alternative condition under which there are globally con-
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vergent algorithms. The results are robust to non-convexity, one-to-one non-linear

reparameterizations, and moderate misspecification. Though off-the-shelf meth-

ods might fail to converge due to the non-convexity of the optimization problem,

the chapter has shown that this does not necessarily imply that it will be difficult

in practice. Econometric theory emphasizes the role of the weighting matrixWn on

the statistical efficiency of the estimator θ̂n. Also, Hall & Inoue (2003), Hansen &

Lee (2021) showed it can alter the pseudo-true value of the parameter under mis-

specification. Here, the rank condition may or may not hold, depending on Wn.

The condition number κW also affects local convergence. This highlights another

role for the weighting matrix: it may facilitate or hinder the estimation itself. Two

empirical applications illustrate the performance of the preferred Gauss-Newton

algorithm.



86

CHAPTER 3

Racial Screening on the Big Screen? Evidence from the Motion Picture Industry

3.1 INTRODUCTION

An employer must decide whether to hire a job applicant. An admission commit-

tee must decide whether to admit a candidate to its entering freshman class. A

journal editor must decide whether to accept an article for publication. All these

settings are characterized by a decision maker who must make an in-or-out decision

about an applicant, having only imperfect information about the applicant’s qual-

ity. The decision maker may use information about the applicant’s race or gender

to guide their decision, which may result in discrimination, i.e., the unequal treat-

ment of applicants with otherwise identical characteristics. The econometrician,

however, can typically observe only the ex-post outcomes of these decisions: the

worker’s productivity, the student’s grades, or the number of citations received by

an article. If we observe differences by race or gender in outcomes, what can we

infer about the extent and nature of discrimination by the decision maker?

In this chapter, we address this question in the context of the U.S. motion

picture industry, where the producer is the decision maker. There are two main

advantages to studying discrimination in the motion picture industry. First, this

setting is of intrinsic interest because of the widespread perception of bias in the

industry. For example, in the 2010s, only 7% of the nominees for the Academy

Awards were African Americans, which is approximately half of their proportion

in the population.1 Does this underrepresentation reflect racial bias? Second, we

1https://www.washingtonpost.com/news/arts-and-entertainment/wp/2016/02/26/
these-charts-explain-how-oscars-diversity-is-way-more-complicated-than-you-think/, accessed
on October 26, 2021.

https://www.washingtonpost.com/news/arts-and-entertainment/wp/2016/02/26/these-charts-explain-how-oscars-diversity-is-way-more-complicated-than-you-think/
https://www.washingtonpost.com/news/arts-and-entertainment/wp/2016/02/26/these-charts-explain-how-oscars-diversity-is-way-more-complicated-than-you-think/
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can accurately measure productivity using box office revenue. This is an essential

requirement to understand the nature of discrimination. The existence of discrim-

ination in this industry can also have wider ranging implications, because actors

can also serve as role models and impact students’ educational attainment (Riley,

2024). Therefore, racial discrimination in movie production may differentially af-

fect young viewers of different backgrounds. Understanding whether and to what

extent discrimination can be reduced (e.g., via information; Chan, 2024) may guide

the design of corrective policies.2

We develop a model of discrimination that allows us to interpret differences in

box-office revenue, conditional on production. In the model, a producer3 receives

an offer to produce a movie (a “script,” similar to the applicant in the examples

above). They observe the expected racial composition of the cast based on the

script and receive a noisy signal of the movie’s expected box-office revenue. Based

on the information, they must choose whether to produce the movie and release it

to the public or not. We define a “white” movie as a movie in which the leading

roles are solely played by whites and a “non-white” movie as a movie in which

the leading roles include non-whites. Our model nests different forms of discrim-

ination within it and delivers a rich set of predictions regarding the extent and

nature of discrimination. We distinguish between three types of discrimination: a)

customer discrimination, whereby moviegoers have a preference for white movies

over non-white movies; b) employer or taste-based discrimination, where the pro-

2Recently, the Academy of Motion Picture Arts and Sciences has announced a multitude of
diversity-oriented changes, including diversity requirements for movies that wish to be nominated
for the Academy Award in the Best Picture category. In this chapter, we analyze a time period that
precedes the inclusion of such standards.

3Throughout the chapter we refer for simplicity to the agent deciding on whether to produce
the movie as the “producer.” This could be a studio executive or other decision maker, and does
not necessarily have to coincide with the producer listed in the movie’s credits.
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ducer suffers a negative utility from producing a non-white movie (Becker, 1957);

and c) statistical discrimination, where the signal conveyed by non-white movies is

less informative about the movie’s true quality (Phelps, 1972; Arrow, 1973). We

show that the moments of the distribution of box-office revenue of movies that are

produced allow one to distinguish between the three types of discrimination.

To test the model’s predictions, we construct a novel data set with racial iden-

tifiers for the cast of more than 7,000 motion pictures released in the United States

between 1997 and 2017. We obtained the data by scraping the popular website

IMDB,4 and combined it with extensive information from OpusData, a private

company specialized in providing data and information on the movie industry.5

The racial identifiers are constructed by combining human raters’ classifications

and a machine learning architecture that integrates a convolutional neural network

(CNN) and support vector machine (SVM; Anwar & Islam, 2017).6

In our main analysis, we define a movie as “non-white” if two of the four top-

billed performers are classified as non-white.7 We document the following find-

ings. First, the average box-office revenue of non-white movies is substantially

higher than that of white movies. The raw non-white/white revenue gap is about

91 log points (150%). The inclusion of a standard set of control variables for other

movie characteristics and the cast reduces the gap to between 43 and 34 log points

(between 54% and 40%), still large and highly statistically significant. Second, the

4http://www.imdb.com
5www.opusdata.com
6We rely on the machine learning algorithm to classify the 8% of actors in our data whose racial

classification was an object of disagreement for more than two of our eight (sometimes nine) hu-
man raters. We find that the algorithm obtains a classification accuracy of more than 95% in our
validation data set, which is considered excellent in the image classification literature. See section
3.4 for further details.

7The non-white category includes mostly African-Americans but may also include Asians, His-
panics, and other ethnicities.

http://www.imdb.com
www.opusdata.com
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box office premium of non-white movies is driven primarily by movies in the bot-

tom half of the distribution. Quantile regressions show that the adjusted gap is

around 54 log points (about 72%) at the bottom quantiles of the distribution, but

the gap at the upper end of the distribution shrinks to about 28 log points (about

33%). These results are robust to different definitions of non-white movies or dif-

ferent dependent variables (e.g., profit margins or profits). Third, we create a mea-

sure of the extent to which a movie’s box-office revenue overperforms relative to

expectations. Following Moretti (2011), we calculate this as the residual in a regres-

sion of opening weekend box-office revenue on the number of opening-weekend

theaters. We find that relative to white movies, non-white movies substantially

overperform relative to expectations.

These results are not consistent with either customer discrimination or statis-

tical discrimination. Instead, we argue that the results are consistent with taste-

based discrimination:8 Non-white movies are held to a higher standard, i.e., they

are produced only if the expected revenue surpasses a threshold that is higher

than the one set for white movies. This pattern may result from either pure pro-

ducer taste or a systematic underestimation of the box-office potential of non-white

movies.

This chapter is situated within a broad and interdisciplinary literature docu-

menting and exploring discrimination in a variety of settings. While our goal in

the next few paragraphs is to focus on the streams of this work to which we di-

rectly contribute, we refer the reader to several excellent surveys in economics,

including Fang & Moro (2011), Lang & Lehmann (2012), Bertrand & Duflo (2017),

8Our identification argument relies on the ordering of the means of the (observed) white and
non-white box-office revenue distributions, as well as on the ordering of the variances. Therefore,
our results may be interpreted as taste-based discrimination quantitatively dominating any other
forms of discrimination that may be at play.
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Lang & Spitzer (2020) and Onuchic (2022) for a broader overview.

We see our work contribute to the stream of the literature that aims to under-

stand the nature of unequal treatments by either distinguishing between statistical

and taste-based discrimination in the data,9 or testing for the presence of one of the

two in a specific market or context. These goals have been pursued experimentally

(List, 2004; Zussman, 2013; Doleac & Stein, 2013; Agan & Starr, 2018; Cui et al.,

2020; Bohren et al., 2023; Gallen & Wasserman, 2023; Chan, 2024)10, as well as by

testing theoretical predictions on secondary data (Altonji & Pierret, 2001; Knowles

et al., 2001; Charles & Guryan, 2008). We contribute to this literature by focusing

on a market where some salient interactions exist between employees and final

customers, and customer demand drives profit maximization. We propose a sim-

ple theoretical framework that nests not only employer taste-based and statistical

discrimination but also customer racial animus, and delivers testable predictions

for each source of unequal treatment.

This chapter is also related to the literature comparing outcomes between

groups to detect the presence of taste-based discrimination. The overarching prob-

lem at the heart of average comparisons (or average-based outcome tests; Becker

1957) is that of infra-marginality, i.e., in the racial setting, differences in averages

might mask both unequal treatment for candidates that are identical but for their

race, as well as racial differences in the distributions of unobserved characteristics.

Canay et al. (2023) present an extensive discussion on the conditions required for

such tests to be valid. The existing literature has dealt with this problem via ei-

ther random assignments of candidates to decision makers (Arnold et al., 2022);

9For a review of the literature on the topic, see Guryan & Charles (2013) and Lippens et al. (2020).
10Chan (2024)’s field evidence and framework are particularly broad as they expand the focus

beyond taste-based and statistical discrimination to include behavioral mechanisms such as biased
beliefs and deniable prejudice.
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exploiting the timing of release decisions made by parole boards (Anwar & Fang,

2015); specifying equilibrium models (Knowles et al., 2001); or adding distribu-

tional assumptions (Simoiu et al., 2017; Pierson et al., 2018; Pierson, 2020). We

contribute to the third stream by proposing a parametric approach that is suitable

for describing a relatively broad class of screening problems and only relies on

the first and second moments of the observed outcome distribution (in our case,

box office revenue) for identification. Although we do rely on distributional as-

sumptions to separately identify the different sources of discrimination, we argue

that the identification results extend to a set of alternative parameterizations with

which empirical researchers might feel comfortable in a variety of settings.

In using higher order moments of the outcome distribution, our test has a sim-

ilar flavor to those recently proposed by Bharadwaj et al. (2024) and Benson et al.

(2024). Bharadwaj et al.’s test is based on the comparison (in the sense of first-

order stochastic dominance) between the entire wage distributions of different

groups under the implicit assumption that all workers are employed, and there

is no screening of workers based on expected productivity. While our approach

nests within Bharadwaj et al.’s insight that studying a non-binary outcome (over a

binary outcome, e.g., callback) adds margin to separately identify different sources

of discrimination, our model explicitly considers the effect of different forms of

discrimination on the (continuous) distribution of outcomes conditional on produc-

tion. Moving away from exploiting the entire outcome distributions, in parallel

work developed independently, Benson et al. propose a model of racial bias in

hiring that nests taste-based discrimination, screening discrimination, and com-

plementary production. They achieve separate identification through testable im-

plications that rely on the mean and variance of workers’ productivity under man-
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agers of different pairs of races, which they test within the retail context. While the

modeling and identification approaches in the two papers are similar, our work

departs from Benson et al. in that we do not require the race of the decision maker

to be observable. We argue that this is an important contribution to study discrimi-

nation in contexts where decisions are likely made by groups rather than single in-

dividuals (e.g., admission committees, parole boards, lending organizations, grant

review panels); or the decision maker in charge might be influenced by other layers

of the organization or industry actors (e.g., media and artistic production, health

care treatment approvals, charging decisions, regulatory or legal compliance deci-

sions); or, as is probably quite common, the identity of the decision maker is not

observed.

Through its empirical application, the chapter also adds to the line of research

that documents the presence of racial discrimination in the motion picture in-

dustry (Weaver, 2011; Fowdur et al., 2012). Closest to our work is the paper by

Kuppuswamy & Younkin (2020), who find that movies with multiple African-

American actors enjoy a box office premium. They rule out customer racial tastes

as a discrimination mechanism through an experimental approach. We confirm

their conclusion in a more comprehensive data set and provide an analytical frame-

work that can be used to interpret racial differences in the mean and variance of

the observed revenue distributions as a function of different forms of discrimina-

tion. Our application is also related to a broad empirical literature on labor market

and recruiting discrimination, which among the most recent contributions include

Åslund et al. (2014); Dustmann et al. (2016); Hedegaard & Tyran (2018); Kline et al.

(2022)11, as well as customer discrimination more broadly (Neumark et al. 1996;

11See Benson et al. (2024) for a more comprehensive list.
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Bar & Zussman 2017; Combes et al. 2016; Leonard et al. 2010 in traditional labor

market and service settings; Kahn & Sherer 1988; Nardinelli & Simon 1990; Stone

& Warren 1999; Burdekin & Idson 1991 in sport contexts.)

The rest of the chapter proceeds as follows. Section 3.2 describes the institu-

tional background of the motion picture industry. Section 3.3 presents our theo-

retical model and discusses its empirical implications. Section 3.4 describes the

data and the process used to classify performers by race. Section 3.5 presents the

main empirical findings and assesses the robustness of the results to different defi-

nitions of race or dependent variables. Section 3.6 presents suggestive evidence of

incorrect beliefs on the revenue potential of non-white movies within the industry.

Section 3.7 discusses and concludes.

3.2 INSTITUTIONAL BACKGROUND OF FILM PRODUCTION

Filmmaking is a complex industry that involves a multiplicity of skills, targets, and

decision makers. Each movie displayed on the screen has been through three ar-

ticulated macro-phases: script writing, production, and distribution. This chapter

studies racial discrimination at the production stage.

A key decision maker in the production phase is the producer.12 They decide

whether a script is worth being turned into a movie and, if so, raise the money

(sometimes supported by one or more executive producers.) The producer is then

responsible for the financial and logistic aspects of the movie.13 The producer over-

sees the hiring of the director, who is the creative soul of the movie, the cast, and

12See for reference Crimson Engine (2018).
13The Producers Guild of America (P.G.A.) has established that the producer’s name in the film

credits can be followed by the p.g.a. certification mark only if the producer has performed a signifi-
cant portion of the producing duties, which includes being physically present on set for a substan-
tial fraction of the production time (P.G.A., n.d.).
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the crew, and decides on the budget allocation.14

In our conceptual framework, we assume that the movie script itself deter-

mines the racial composition of the leading characters in a movie. Although the

producer and the casting team15 may have some latitude in choosing the support-

ing characters, we think it is plausible that the race of the main characters can be

inferred directly from the script. In fact, casting notices for actors typically specify

features such as race and ethnicity (and other aspects of physical appearance) for

specific roles.

Our model, presented below, describes the producer’s decision about whether

to produce the movie after they have seen the movie’s script and observed the

racial composition of the cast and a signal of the movie’s quality.

3.3 A MODEL OF THE SCREENING PROCESS

We present here a theoretical framework that helps us understand how observed

box-office revenue can inform us about the extent and nature of discrimination

in the industry. We assume that the movie production process has the following

timeline.

Step 1: Script arrival

There are two types of movies: white movies, denoted by w, and non-white

14In describing our model in Section 3.3, we will therefore refer to the decision maker as the
“producer.” It is likely more accurate, however, to think of the decision as made by several agents
along a more complex chain of command, as illustrated in the following quote by popular American
filmmaker Ed Zwick (Zwick, 2024): “When the creative executive says ‘’we’re going to make this
movie”, it means she’ll try to get the VP to read it. When the VP says he’ll make it, it means
he’s read positive coverage. When the EVP says it, it means she’ll take credit for finding it if the
president of production likes it. When the president of production says it, it means he needs to tell
the CEO which actor is starring in it. And at last, when the CEO says we’re going to make this
movie, it means it’ll get made if he still has his job in six months.”

15While the producer can be correctly thought of as the primary decision maker in the production
process, casting decisions are typically shared among multiple roles.
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movies, denoted by b. A risk-averse producer wishes to maximize log revenue,

denoted by π. The producer receives a script and perfectly observes its type t.

However, box office revenues are not observed. We assume that ex-ante box-office

revenues of a movie of type t follow a log-normal distribution16 with type-specific

parameters µt and σ2
πt :

π | t ∼ N(µt, σ
2
πt), ∀t ∈ {w, b}

.

Step 2: Signal and prior updating

Based on the script, the producer updates her prior about the movie’s success.

Formally, we can think of the producer observing a signal (y) of the movie’s box-

office revenue. The signal is normally distributed and is well-calibrated, meaning

that in expectation, it is equal to the movie’s actual (log) box-office revenue, but it

is noisy. Critically, we assume that the precision of the signal may differ by movie

racial type. Therefore:

y | π, t ∼ N(πt, σ
2
yt).

Given this setup, it is straightforward to calculate the posterior mean of log

box-office revenue, conditional on the signal and the movie’s type:

E(π | y, t) = σ2
πt

σ2
πt + σ2

yt

y +
σ2
yt

σ2
πt + σ2

yt

µt. (3.1)

16The log-normal assumption is made for analytical convenience. In Appendix C.2, we explore
alternative distributional assumptions. Most of our results are not sensitive to the specific distri-
butional assumptions. Later in the chapter, we highlight which results depend on the log-normal
distribution.



96

Step 3: Production decision

Producers produce a movie and release it to the public if the expected log box-

office revenue, conditional on the movie’s type and signal, exceeds a given thresh-

old. This threshold (the revenue threshold) is exogenously given. We can think of it

as the reservation revenue from a sequential search model, i.e., the value of the rev-

enue that makes the producer indifferent between producing the movie or waiting

for a better script.17 We denote this revenue threshold π0t, making the critical as-

sumption that the threshold is type-specific. For example, this could result from

the producer having a taste for producing movies of a given type.

The movie is produced if

E(π|y, t) > π0t, (3.2)

This is equivalent to saying that the movie is produced only if the signal y exceeds

a given threshold (the signal threshold). Based on equation (3.1) and condition (3.2),

it is easy to show that the signal threshold is

ȳt = π0t + (π0t − µt)
σ2
yt

σ2
πt

. (3.3)

In other words, the signal threshold is type-specific and depends on the revenue

threshold, the parameters of the prior distribution, and the precision of the signal.

This threshold, together with the statistical features of the ex-ante distribution

of box-office revenue and the distribution of revenue conditional on the signal,

determines the ex-post distribution of box-office revenue. The following proposi-

17We think of the race-specific revenue threshold as capturing the disutility cost associated with
producing a movie of a given racial type. In our model, the producer does not explicitly internalize
the production cost. See Section 3.5.4 for a more extensive discussion of this assumption.
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tion establishes the comparative statics of the signal threshold with respect to the

parameters of the model.

Proposition 11. The following comparative statics results hold:

(a) ȳt decreases in µt.

(b) ȳt increases in π0t.

(c) If π0t > µt, ȳt increases in σ2
yt.

(d) If π0t < µt, ȳt decreases in σ2
yt.

Proof. See Appendix C.1

The first two statements in Proposition 11 are straightforward and intuitive.

If the ex-ante expected (log) revenue is higher (a high µt), the movie is produced

even if the signal is not very good. Similarly, when the revenue threshold (π0t)

is high, the signal must be excellent to produce the movie. The third and fourth

items in the Proposition are more involved but are familiar from the literature on

statistical discrimination (Aigner and Cain, 1977; Lundberg and Startz, 1983; Neu-

mark, 2012). Intuitively, if the signal is less precise (a high value of σ2
yt,) and the

producer wants to produce only high-revenue movies, she will have to set a high

signal threshold to make sure she only picks the right tail of the revenue distribu-

tion (item (c) in Proposition 11); on the other hand, if the producer only wants to

cull out very low revenue movies and the signal is uninformative, the threshold

must be set at a low value to ensure that only the very worst (i.e., lowest-revenue)

movies are weeded out (item (d) in the proposition).18

18In Appendix C.2, we explore two departures from the normal-normal model. First, we consider



98

3.3.1 Predictions for empirical work

Proposition 11 characterizes the properties of the signal threshold that determines

whether a movie is produced. In practice, we do not observe the signal threshold,

so the results are not useful for empirical analysis. However, we do observe the

box office revenue of movies that are actually produced and released to the public.

The mean and variance of log box-office revenue, conditional on production, are:19

E(π | y > ȳt) = µt + σ
ϕ(π0−µt

σ
)

1− Φ(π0−µt

σ
)

(3.4)

V ar(π | y > ȳt) = σ2

(
1 + σ2

yt + λ(
π0 − µt

σ
)

(
π0 − µt

σ
− λ(

π0 − µt

σ
)

))
, (3.5)

where σ =
σ2
πt√

σ2
πt+σ2

yt

and λ(x) = ϕ(x)
(1−Φ(x))

.

We can then formulate our central proposition, which enables us to predict how

different types of discrimination affect box-office revenues of white and non-white

movies produced.

Proposition 12. Let Et ≡ E(π|y > ȳt) and V art ≡ V ar(π|y > ȳt) be the mean and

variance of log box-office revenue conditional on production, as defined in equations (3.4)

a case where producers care only about the binary outcome “whether a movie is a hit” and decide
to produce the script only if the posterior probability exceeds a certain threshold (we dub this the
Beta-Binomial model). The comparative statics for the signal threshold in this model match exactly
those of the normal-normal model, and so do the testable predictions. Second, we consider the
case where the prior distribution of revenue is Pareto rather than log-normal (the Pareto model).
The comparative statics for the signal threshold in the Pareto model match exactly those of the
normal-normal model for the cases of customer and taste-based discrimination. The predictions
are somewhat different, as in the Pareto model a) under taste-based discrimination, both the mean
and the variance of log revenue conditional on production are predicted to be higher for non-white
movies; and b) under statistical discrimination, both the mean and the variance appear to have a
U-shaped relationship with the noise of the signal. Importantly, in the Pareto model, none of the
three forms of discrimination can match the observed patterns that the mean log revenue is higher
for non-white movies, while the variance of log-revenue is lower for non-white movies (see Section
3.5.5).

19Rosenbaum (1961).
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and (3.5). Then, the following comparative statics results hold:

(a) Et and V art increase in µt.

(b) Et increases in π0, V art decreases in π0.

(c) Et decreases in σ2
yt, V art increases in σ2

yt.

Proof. See Appendix C.1

We first focus on the intuition behind the comparative statics of Et with respect

to the parameters. The intuition for the first two results is straightforward: Ex-

pected revenue conditional on production is higher, the more to the right lies the

prior distribution of revenue (result (a)), and the higher is the revenue threshold

(result (b)). The third result implies that expected revenue conditional on produc-

tion increases with signal precision. This result may seem counter-intuitive, as the

signal threshold can either increase or decrease with σ2
yt (Proposition 11, results

from (c) and (d)). To gain intuition, it is useful to consider the extreme cases of a

perfectly informative (σ2
yt = 0) vis-à-vis perfectly uninformative signal (σ2

yt → ∞).

If the signal is perfectly informative, the movie is produced only if the signal

(which is exactly equal to box-office revenue) is above the revenue threshold. This

implies that expected revenue conditional on production is strictly greater than µt

because some movies will be below the threshold and are not produced. On the

other hand, if the signal is perfectly uninformative, whether a movie exceeds the

signal threshold conveys no information about its revenue – the expected revenue

conditional on production is, therefore, µt.

For the variance results, it is helpful to consider the case of a perfectly informa-

tive signal. The distribution of revenue conditional on production is a truncated

normal distribution, with the truncation point equal to the revenue threshold π0.
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If the whole distribution is shifted to the right and the threshold remains the same,

it is easy to see that the variance also increases (result (a)). If the revenue threshold

π0 increases, the truncation point shifts to the right and the distribution variance

decreases (result (b)). As for the third result, it is again useful to consider the two

polar cases of a perfectly informative vs. a perfectly uninformative signal: With a

perfectly informative signal, the distribution of box-office revenue is a truncated

normal distribution, which necessarily has a smaller variance than the untruncated

distribution that results from a perfectly uninformative signal.

We can now use Proposition 12 to characterize the mean and variance of ob-

served box-office revenues for white and non-white movies under different types

of discrimination.

Case 1: Customer discrimination. Customer discrimination implies that the

viewing public has a preference for white movies over non-white ones. In terms

of our model, this means that the entire distribution of log box-office revenue

for white movies is shifted to the right relative to the distribution for non-white

movies, or µb < µw.

Then, by result 1, it follows that Eb < Ew, and Vb < Vw. We can, therefore, state

the following prediction:

Prediction 1. Under customer discrimination, the mean log box-office revenue for non-

white movies is lower than for white movies, and the variance of log box-office revenue for

non-white movies is lower than for white movies.

Case 2: Taste-based discrimination. We can think of taste-based discrimina-

tion as the producer suffering a utility loss from producing non-white movies.

Holding everything else constant, the producer will produce a non-white movie

only if the expected log revenue exceeds a higher threshold than the one she sets
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for white movies to compensate her for the disutility of producing a non-white

movie. In this case, π0b > π0w. By result 2, we have that Eb > Ew and Vb < Vw. We

can, therefore, state Prediction 2:

Prediction 2. Under taste-based discrimination, the mean log box-office revenue for non-

white movies is higher than for white movies. The variance of log box-office revenue for

non-white movies is lower than for white movies.

Case 3: Statistical discrimination. We classify under statistical discrimination

the case where the informativeness of the signal for non-white movies is smaller

than the one for white movies. We believe this assumption is plausible as histor-

ically there have been fewer movies with non-white characters, and the (mostly

white) producers may find it more difficult to evaluate how successful a movie

with non-white characters will be. In this case, σ2
yb > σ2

yw. By result 3, we have that

Eb < Ew and Vb > Vw. We can, therefore, state prediction 3:

Prediction 3. Under statistical discrimination, the mean log box-office revenue for non-

white movies is lower than for white movies, and the variance of log box-office revenue for

non-white movies is higher than for white movies.

Table 3.1 summarizes our model predictions. In the remainder of the chapter,

we use the above predictions to assess the extent and nature of discrimination in

the motion picture industry.20

20Throughout, we have assumed that a movie’s script is not race-neutral. In fact, our empirical
results are driven by genres in which the assumption of non-race-neutral scripts is more likely to
hold (see Table 3.7). If scripts are race-neutral, the producer may decide both whether to produce
the movie and the racial composition of the cast. However, if hiring a non-white cast is (at least on
average) cheaper than hiring a white cast (Appendix Figure D.2), then a mere comparison of our
race-specific revenue thresholds will likely understate the extent of taste-based discrimination in the
market.
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3.4 DATA

3.4.1 Facial classification

A key ingredient of our chapter is creating a data set with racial identifiers for

movie casts. Some recent papers have used machine learning tools to classify im-

ages based on skin tone (Adukia et al., 2023; Colella, 2021). We note that these

methods are only partially adequate for our purposes. First, we are interested in

classifying images of all non-white actors, including those of Asian, Native Amer-

ican, and other ethnicities that are hard to classify based on skin tone alone. Sec-

ond, even the most accurate machine-learning algorithm will yield some error rate

and, most importantly, may not be able to fully capture all the shades of human

perceptions, which is likely the most important dimension for classification in an

entertainment context. Therefore, we relied on a team of ten human raters to as-

sign racial identifiers to more than 7000 performer images downloaded from the

popular website IMDB.21

Each rater was assigned 8 blocks of about 800 performers22 and was asked

to assess whether they thought the person in the image was White/Caucasian,

Black/African-American, Hispanic, Asian, Native American/Pacific Islander, South

Asian, or Other. The option Unable to Tell was also made available to the respon-

dents. Raters were specifically instructed not to consult the internet for any infor-

mation about the performer and to classify the image based on their perception

alone. This procedure resulted in between 8 and 9 human ratings for each of the

performers in our data set. We assigned to each image the modal classification as

long as no more than two raters disagreed on that image’s classification.23 This

21www.imdb.com
22One rater completed only four blocks.
23We grouped together the White/Caucasian and Hispanic categories, as we realized that it was

www.imdb.com
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allowed us to classify about 92% of the performers in our sample as either White

(79.8%), Black (9.1%) or Asian (2.6%). For the remaining performers in the sam-

ple, we used the machine learning algorithm proposed by Anwar & Islam (2017)24,

described in more detail in Appendix C.3.

3.4.2 Additional variables

Our analysis is based on a sample of more than 7000 motion pictures released in

the United States between 1997 and 2017. We obtain this information from Opus

Data,25 a private company that collects information on the industry, and rely on

IMDb for the approximately 5% of observations in our sample for which OPUS

revenues are unavailable. We gather aggregate financial data (box office revenue,

production budget, opening weekend revenue, etc.) and metadata (genre, produc-

tion method) for all movies in our sample.

The main variables of interest in our data set include the gross domestic box-

office revenue,26 production costs,27 movie run time, Metacritic score, release date,

difficult to accurately distinguish between the two. None of the substantive results in the chapter
are meaningfully affected if we do not impose this grouping.

24Link: https://arxiv.org/ftp/arxiv/papers/1709/1709.07429.pdf.
25www.opusdata.com
26Our baseline definition of a movie’s revenue includes domestic box-office revenues and ex-

cludes international box-office sales as well as DVD and Blu-ray revenues. While the information
for revenues other than from domestic theaters is available in OPUS, it is not in IMDB, which is the
data source we use for revenues whenever the information in OPUS is missing. Reassuringly, we
note that, as we restrict the analysis to non-missing OPUS data, the progressive inclusion of DVD,
Blu-ray, and international sales does not qualitatively alter our main results. The results are avail-
able upon request. Our definition of box-office revenues also excludes streaming revenues, which
are instead not available in our data. In 2021, the digital market (which includes video streaming)
accounted for 72% of the industry revenue composition, with online video subscription becoming
the second largest subscription revenue market as a result of a 26% surge (Motion Picture Associ-
ation, 2022). While we cannot directly test whether non-white movies account for a similar share
of revenues across the streaming vs. non-streaming sectors, we note that our main result is robust
(and even larger in magnitude; see Table 3.7) as we restrict our sample to the years before 2007,
when streaming accounted for a negligible share of spending on entertainment (see Appendix Fig-
ure D.1). Also, no geographic breakdown of revenues is available in our data.

27All monetary values are expressed in 2005 dollars.

https://arxiv.org/ftp/arxiv/papers/1709/1709.07429.pdf
www.opusdata.com
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MPAA rating, number of theaters in which the movie was released, and number

of weeks in which the movie was in theaters. We also collect information on the

gender and age of the four top-billed performers. We create a variable called “star

power,” equal to the cumulative box-office revenue of all movies in which each

performer appeared up to the release date of the current movie.

3.4.3 Summary statistics

Summary statistics are shown in Table 3.2. The top panel shows that about 12

percent of the top-billed performers in our sample are non-white. About three-

quarters of the movies have zero non-white performers, and about 18 percent have

only one non-white performer. Our baseline analysis defines a movie as non-white

if at least two of the four top-billed performers are non-white. Based on this def-

inition, about eight percent of the movies in our sample are non-white. We also

assess the robustness of the results to different definitions of non-white movies.

As for the other variables, the distribution of box office revenue is heavily

skewed to the right. Therefore, we use its logarithm as the main dependent vari-

able in our baseline analysis. We collapse the “niche” genres into broader cate-

gories so that all movies fall into one of five broad genres. For some of the vari-

ables, we only have incomplete data: For example, production costs are available

for only about 56 percent of the sample,28 while the Metacritic score is available

only for 71 percent of the sample. To maximize sample size, in the empirical anal-

ysis, we replace missing values with zeros and add a dummy variable indicating

28Probit and logit regressions suggest that movies with higher revenue have a significantly (in
the statistical sense) higher probability of non-missing cost information, while the conditional dif-
ference between white and non-white movies is not statistically distinguishable from zero. The
main result is robust to restricting the sample to observations with non-missing cost information:
see columns 5 and 6 in Table 3.3.
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that the variable is missing if the missing value is not central to the analysis.

3.5 RESULTS

3.5.1 Non-parametric analysis

Figure 3.1 presents a box-whisker plot of box-office revenue by the number of

non-white performers in the movie (out of the four top-billed actors.) The mean

box-office revenue increases markedly with the number of non-white performers,

while the dispersion of the distribution decreases. Also, the 25th percentile (and

lower adjacent value) visibly increases with the number of non-white performers.

On the other hand, the 75th percentile is quite stable across cast racial compositions,

and the upper adjacent value reduces slightly. We interpret these patterns as the

left tail of the non-white movie distribution being missing, which is consistent with

the notion that non-white movies are held to a higher standard for production.

Of course, this analysis does not take into account other observable differences

that may exist between white and non-white movies. In the following sections,

we assess whether the non-white premium in box-office revenue is robust to the

inclusion of a broad set of other movie and cast characteristics.

3.5.2 OLS regressions

The main regression model is the following:

ln yit = β0 + β1Nonwhiteit + β2Xit + δt + εit, (3.6)

where yit denotes domestic box-office revenue, in 2005 U.S. dollars, of movie i re-

leased in year t; Nonwhiteit, the key explanatory variable of interest, is a dummy
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variable indicating whether at least two of the four top-billed performers are non-

white; Xit is a vector of additional control variables, including both cast (aver-

age age, gender composition, the “star power” variable described previously) and

movie (production budget, MPAA rating, Metacritic score, run time, genre dum-

mies) characteristics; δt is a year-of-release fixed effect, and εit is the robust stan-

dard error clustered by distributor.29

The results are presented in Table 3.3. The first column of the table shows the

unadjusted difference in mean log revenue between white and non-white movies

without any controls. The mean box-office revenue of non-white movies is almost

2.5 times as high as that of white movies (exp(0.910) ≈ 2.5). In column 2, we

include controls for other characteristics of the cast (average age, gender composi-

tion, and star power), and the coefficient remains almost unchanged. In column 3,

we add controls for the production budget, a dummy for whether the production

budget is missing, and all other movie characteristics, including genre and year-

of-release fixed effects. The coefficient on the non-white indicator drops to 0.433,

implying that non-white movies earn about 54 percent more than white movies

at the box office. In column 4, we further add controls for the distributor-level

fixed effects, and the coefficient drops to 0.336 (40% revenue gap) while remain-

ing highly significant. For both column 5 and column 6, we restrict the analysis to

movies with non-missing data on production costs. In column 5, we replicate col-

umn 2, and the coefficient drops from 0.926 to 0.488, which explains what drives

the decrease of the coefficient from column 2 to column 3.30 Finally, column 6 repli-

29We collapse all distributors with only one movie in our data set into one single distributor
category (Other/Unknown).

30Conditional on being available in our data, the Metacritic score does not differ significantly on
average across white and non-white movies, and a Kolmogorov-Smirnov test fails to reject that the
distributions are the same. The Metacritic score is missing for 30% of white movies and 18% of non-
white movies in our sample. The correlation coefficient between log revenues and the Metacritic
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cates column 3, and the results in this restricted sample are mostly unchanged –

the coefficient on the non-white indicator rises to 0.522, implying that non-white

movies earn on average about 69 percent more than white movies.31

These initial results on the differences between white and non-white movies

are not consistent with either a model of customer discrimination, where audi-

ences prefer white movies to non-white movies nor a model of statistical discrim-

ination, where the signal conveyed by non-white scripts is less informative about

future box-office revenue. Both models predict that white movies should have, on

average, higher box-office revenue than non-white movies, in contrast to our find-

ings. Instead, the results are consistent with a model of taste-based discrimination,

where non-white movies are held to a higher standard, i.e., they are only produced

if the revenue exceeds a higher threshold than the one required of white movies.

In what follows, we look at how other features of the distribution differ between

white and non-white movies.

3.5.3 Quantile regressions

The model described in Section 3.3 derives predictions for not only the mean but

also the variance of box-office revenues. In this subsection, we analyze other mea-

sures of dispersion, namely the white-nonwhite gap at different percentiles of the

revenue distribution. Specifically, we estimate a series of quantile regressions of

score is equal to .11 and statistically significant at the 1% level.
31We have data on the script languages for approximately 70% of the working sample. Within

this sample, approximately 86% percent of the movies in our sample have English as the only
language on file, and this is a subset of the 95% that have English among the languages to which
they are associated. The main result is robust to restricting the sample to English-language movies,
indicating that our findings are not driven by foreign-language movies.
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the following type:

Qτ (ln yit|Nonwhite,X) = γ0τ + γ1τNonwhiteit + γ2τXit + δt,

where Qτ (ln yit|Nonwhite,X) denotes the τ th conditional quantile of the distribu-

tion of log box-office revenue, and τ ∈ {0.05, 0.10, ...0.95}. The main coefficients

of interest are the γ1τ ’s, which measure the gap in conditional quantiles across the

white and non-white box-office revenue distributions..

Figure 3.2 plots the quantile regression coefficients against the quantiles. As

was already apparent from the box-whisker plots in Figure 3.1, from the 20th quan-

tile onwards there is a clear downward trend in the quantile coefficients: The

white-nonwhite gap at the lower quantiles is around 60 log points, while it is only

about 20 log points at the upper quantiles. This finding reinforces the interpreta-

tion that there is “missing mass” in the left-tail of the non-white revenue distribu-

tion, or in other words, that non-white movies at the low end of the distribution of

box-office revenue are not produced, while comparable white movies are.

3.5.4 Robustness

We next investigate the robustness of our results to different definitions of movie

type and different dependent variables.

Classification of non-white movies. In Table 3.4, we consider additional defi-

nitions of “non-white” movies. The first column in the table reproduces the results

using our baseline classification of non-white movies as those in which at least two

of the four top-billed performers are non-white. The first row in the table shows

the OLS. results from Table 3.3, while the remaining rows present the quantile re-

gression coefficients at selected quantiles. All specifications include the full set of
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control variables.

In column 2, we change the definition of non-white movies to include all

movies in which at least one of the four top-billed performers is non-white. We

view this as a noisier indicator of the movie type, as a non-white actor may be cast

in a supporting role in a movie that is mainly about white characters and story-

lines (a form of tokenism). Using this definition, the OLS coefficient is substantially

reduced (about 23 log points) but still large and highly statistically significant. The

pattern of quantile regression coefficients is also clearly downward sloping, with

the gap going from about 26 log points at the 25th to about 19 log points at the 90th

percentile. In column 3, we replace the dummy indicator for non-white movies

with the share of non-whites among the four top-billed performers. The results

are quantitatively and qualitatively similar to those of the baseline specification.

Finally, in column 4, we classify a movie as non-white only if the top-billed per-

former is non-white. According to this definition, the average white-nonwhite

premium is slightly smaller than in the baseline (46 log points), and the pattern of

the quantile regression coefficients is also downward sloping.32

On the whole, Table 3.4 shows that the main conclusions regarding the white-

nonwhite premium and the nature of discrimination in the industry are not sensi-

tive to the exact definition of non-white movies.

Choice of the dependent variable. In all the analyses so far, we have looked at

the logarithm of box-office revenue as the primary dependent variable of interest.

The main reason for this choice is that box-office revenue is readily available for

almost all movies, and it has been traditionally used as the primary metric for

32Our main result is robust to restricting the sample to movies with cast popularity (see section
3.4 for a definition of “star power”) below the median, ruling out that the non-white premium that
we find is driven by “superstar” non-white movies exclusively.
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assessing the commercial success of a movie. However, producers also consider

the expected cost of a movie when making production decisions. While we have

addressed this in part by including production costs as an explanatory variable in

Table 3.3, one may also want to work with profits directly. In the Opus data set, we

observe a movie’s production budget for about 56% of all movies so that we can

calculate various measures of profit.33 We report the results of this analysis in Table

3.5. The sample includes only those movies for which we observe the production

budget. All specifications include the full set of control variables.

In column 1, we use the logarithm of the gross profit margin as a dependent

variable, defined as the ratio of domestic box-office revenue to the production

budget. The results are broadly consistent with those in the previous sections:

Non-white movies have on average a substantially higher profit margin, and the

white-nonwhite gap becomes smaller as we move from the low to the high end of

the distribution.

In column 2, we focus on the total profit, calculated simply as the difference

between box-office revenue and the production budget. It is still the case that the

average non-white movie earns a higher profit than the average white movie (by

about $8.7 million), holding other characteristics fixed. However, we no longer ob-

serve a clear declining pattern in the white-nonwhite gap as we move from lower

to upper quantiles in the profit distribution. In fact, the gap appears to be fairly

stable (at least in the statistical sense) at all quantiles of the distribution. This could

33Our measure of profits should only be viewed as a coarse estimate. First, the production budget
does not represent the entirety of a movie’s production costs, which typically also include market-
ing costs. Marketing costs are rarely disclosed. Second, the producer typically does not collect all
of the box-office revenue, as theaters also receive a cut depending on bilateral negotiations as well
as other factors such as the length of time that the movie has been in theaters. Third, cost sharing –
a common practice in the movie industry (Weinstein, 1998) – is likely to reduce the extent to which
producers internalize costs in their decision making.
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be partly due to the shape of the profit distribution, which tends to be quite right-

skewed. We confirm this in column 3, where we use the level of box-office rev-

enue (rather than the logarithm) as the dependent variable. We find a positive

premium favoring white movies, but now the pattern of quantile regression coef-

ficients shows that the gap becomes larger as we move from the low to the high

end of the distribution. We note that, given the substantial right skewness in the

revenue distribution, the predictions regarding the variance of box-office revenues

in levels conditional on production derived from a model that assumes normal dis-

tributions no longer hold necessarily.

3.5.5 The white-nonwhite gap in residual variance

An alternative approach to verify our dispersion predictions is to explore how

the residual variance differs across white and non-white movies. Borrowing from

the heteroskedasticity literature, we posit that the squared residuals from the OLS

regression in equation 3.6 have the form:

u2it = exp(Z ′
itα),

where the vector Zit contains a subset of the variables included in the main regres-

sion (potentially, all of them); We then estimate regressions of ln û2it on the racial

indicator and additional control variables. The results are reported in Table 3.6.

In column 1, the residual variance is assumed to depend only on the racial indi-

cator. Consistent with the results of the box-whisker plot and quantile regressions,

we find that non-white movies have a substantially lower residual variance than

white movies. In columns 2 and 3, we progressively add additional controls to the

variance regression. The results are essentially unchanged – the residual variance
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of non-white movies is lower than that of white movies.

In the remaining three columns, we experiment with different definitions of

non-white movies. The coefficients on the racial variable in the residual regressions

are somewhat smaller in absolute values, but still highly statistically significant.34

Overall, our results are consistent with what our theoretical model defines as

taste-based discrimination, i.e., non-white movies being held to a higher standard,

which results in a higher mean and lower variance of box-office revenue for the

produced non-white movies.35

3.5.6 Heterogeneity Analysis

In Table 3.7, we explore the heterogeneity of our results along a number of different

dimensions. First, we look at whether our results are driven by movies produced

and distributed by specific segments of the industry. One concern is that our re-

sults may capture differences between movies produced by the major studios (the

so-called “Big-Six”)36 vs. those produced by smaller studios. It could be that the

smaller box-office revenue of white movies reflects the fact that these are often pro-

duced by small independent studios, while non-white movies are passed over by

these studios altogether. Columns 1 and 2 of the table, however, show that this is

not the case: the non-white revenue premium is present among movies distributed

34The coefficient on the racial variable remains negative and statistically significant when the
outcome variable is the log of the profit margin (column 1 of Table 3.5,) but it is imprecisely esti-
mated for profits and revenues in levels (columns 2 and 3 of Table 3.5.) Results are available upon
request.

35These observed patterns stand in stark contrast to the concept of mean-variance trade-off in
the rational asset pricing literature, which traditionally assumes perfectly informed mean-variance
utility-maximizing agents (Cochrane, 2005).

36These Big-Six studios are: Warner Bros., Paramount Pictures, Walt Disney, Sony / Columbia
Pictures, Universal Studios, and 20th Century Fox. These six studios accounted for almost 90% of
the US/Canadian market as of 2007. In 2020, Disney acquired 20th Century Fox, and the group
is now commonly referred to as the “Big Five”. The Big-Six control is included in our regression
analysis as a control.
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by both types of studios.

We next look at differences across genres (columns 3-5 of the table). The non-

white premium is more pronounced among comedies and dramas, where the

script is more likely to convey information about the racial composition of the

cast. By contrast, the non-white premium is small and not statistically significant

in action/adventure movies.

Columns 6 and 7 examine heterogeneity by time period. We look separately at

movies produced before and after 2007, the median year in our sample. If taste-

based discrimination declines over time, either because of a change in attitudes or

because of a change in the competitive landscape, we would expect the non-white

premium to shrink. There is some evidence in support of these hypotheses: The

non-white premium is 57 log points in the pre-2007 period, but falls to 26 log points

in the the post-2008 period.

Finally, in columns 8 and 9, we look at whether the results differ by the gender

composition of the cast. We define “female” movies as those in which (strictly)

more than 50% of the leading actors are women. The non-white premium is con-

siderably larger among female movies, suggesting that non-white movies must

pass an even higher threshold if the cast is predominantly female.

3.5.7 Producer analysis

In this section, we explore the role of the producer’s race in explaining the non-

white box-office premium. Neither IMDB nor OpusData contains demographic

information on movie producers. We, therefore, rely on a human rater to code the

producers’ race for a subsample of our films. The first step is matching films to

producer names, which are available in the Credits section of the Opus data set.
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We have information on producers for 3,878 out of the 6,943 movies in our sample:

9,842 distinct names are associated with those movies in the capacity of Producer or

Executive Producer. Of these producers, fewer than 1% can be racially categorized

via Wikipedia. For the remainder, we then randomly drew approximately 8% of

the remaining producers associated with either white or non-white movies37 and

asked a human rater to racially classify these producers based on photos and text

resources available online. We then matched the producer’s racial information to

our main data set. We end up with a working sample of 1,955 movies with racial

information for at least one producer. Of these, 261 (13%) display more than two

non-white actors, while 403 (21% – 257 of the white movies and 146 of the non-

white movies) are associated with at least one non-white producer.

Table 3.8 shows the results of our producer analysis. Column 1 reports the esti-

mated non-white premium in the sub-sample of interest. The coefficient is positive

and statistically significant like the one obtained in the full sample (Table 3.3, col-

umn 3) but approximately half in size. Adding the producer’s race to the controls

(Column 2) does not change the coefficient of interest in any significant way, and

the producer control itself is statistically insignificant.38

Column 3 reports the results obtained from interacting the racial indicator for

the cast with the racial indicator for the producer. Our findings reveal that the non-

white revenue premium is driven by movies with at least one non-white producer,

while on average, films associated with white producers do not display a non-

37In our sample, the average number of producers and executive producers (and co-producers)
associated with a film is 8 (9), and the median is 7 (8). Therefore, to guarantee a large enough
working sample for our producer analysis, we randomize at the producer level and not at the
movie level. This implies that in our exercise, we are comparing movies with at least one non-
white producer to movies that may or may not have any non-white producers. We stratified our
randomization by the movie racial type to end up with a reasonably balanced data set.

38The findings are robust to the inclusion of studio fixed effects. Standard errors are clustered by
the studio. Results are available upon request.
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white revenue premium. Taken at face value, these findings suggest that taste-

based discrimination may be more concentrated among non-white producers. This

evidence should be interpreted with caution, however, given the limited scope of

our analysis. This pattern can be rationalized through the observation, discussed

in Section 3.2, that producers may not be the pivotal decision makers in the film

production decision and may be held to different standards themselves, depending

on their racial group. An alternative interpretation is that non-white producers

have a comparative advantage in producing non-white movies, and, in particular,

may obtain a more precise signal of revenue when evaluating scripts. In the context

of our model, such an informational advantage would indeed translate into higher

revenues for non-white movies produced by non-white producers.

3.6 ALTERNATIVE EXPLANATION: IS THE INDUSTRY SURPRISED?

The empirical results so far suggest that non-white movies are held to higher pro-

duction standards than white movies. A candidate interpretation of these patterns

is that producers dislike producing non-white movies and face a disutility cost

every time they produce one. As a result, the expected revenue for producing non-

white movies needs to be higher than the expected revenue for producing white

movies (in the context of the model, π0b > π0w).

An alternative, non-mutually exclusive, interpretation is that the industry sys-

tematically underestimates the revenue potential of non-white movies relative to

white movies.39,40 In other words, actual box-office revenue for non-white movies
39The film industry is known for having a hard time forecasting movies’ success, as well as an-

alyzing past results: “Why was ‘’The Hunger Games” such a big hit? Because it had a built-in
audience? Because it starred Jennifer Lawrence? Because it was released around spring break?
The business is filled with analysts who claim to have predictive powers, but the fact that a vast
majority of films fail to break even proves that nobody knows anything for sure” (Davidson, 2012.)

40See Chan (2024); Bohren et al. (2023); Esponda et al. (2022); Bordalo et al. (2016); Fong & Luttmer
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is πb, but producers perceive it to be π̂b = πb − eb, with eb > 0. This explanation

would yield similar predictions to the ones derived from taste-based discrimina-

tion, even if the nature of discrimination in the industry is quite different.

Our model intrinsically cannot identify taste-based disutility costs and biased

beliefs separately. Nevertheless, we can make some progress on this front by ex-

ploiting the decision that distributors make on the number of theaters at which

the movie is displayed on the opening weekend. We argue that this is a proxy of

the market’s rational expectation of the movie’s potential after production, as dis-

tributors’ decision-making is less likely to be affected by taste-based or statistical

discrimination: While producers “sign” a movie as a creation of theirs and create

a permanent bond with the film, studios, and theater owners are more likely to

make distribution choices based on purely profit-maximizing considerations once

the movie has been produced. Moreover, statistical discrimination should also be

of relatively less importance at the distribution stage, because distributors also ob-

serve the ex-post quality of the movie rather than just the script.

We conjecture that distributors choose the number of theaters based on ex-

pected customer demand. If non-white movies are displayed in fewer theaters

than white movies, this indicates that distributors expect relatively smaller rev-

enue from the non-white movies. Therefore, if non-white movies have the same

level of customer demand but are displayed in fewer theaters, we conclude that

distributors underestimate their revenue potential.

Using data on the number of screens in which a movie is shown, we test the hy-

pothesis that the industry systematically underestimates the revenue potential of

non-white movies. Specifically, we first regress first-weekend box office revenues

(2011) for evidence of inaccurate beliefs in other contexts.
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on the number of theaters in which movies are projected over the first weekend

upon their release. Following Moretti (2011), we interpret this as a proxy for the

industry expectation of a movie’s box-office revenue. The residuals from this re-

gression can then be viewed as a measure of the industry’s underestimation or

overestimation of a movie’s revenue potential. If the non-white mean residual

is significantly larger than the white mean residual, this suggests that the indus-

try systematically underestimates non-white movies’ revenue potential relative to

white movies.

We start by running a simple bivariate regression of log first-weekend revenues

on the log number of theaters. The R-squared of this regression is 0.89 (column 1 of

Table 3.9), and it remains relatively stable as further controls are added (columns

2 and 3). The number of theaters is, hence, a good predictor of first-weekend rev-

enues.

We then test whether the residuals obtained from the regressions in Table are

on average between non-white and white movies. The results are presented in the

bottom panel of the table. We find that the mean residual for non-white movies

is positive across specifications, while the mean residual for white movies is close

to zero. That is, the industry underestimates the first-weekend success of non-

white movies relative to white movies. The difference between the white and the

non-white residual is always statistically significant. We conclude that our results

might be at least partly explained by a systematic underestimation of non-white

movies’ box-office potential within the industry.
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3.7 CONCLUSION

This chapter presents a framework for detecting the extent and nature of discrimi-

nation in contexts in which decision-makers screen applicants. The econometrician

can only observe the outcomes of applicants who successfully pass the screening

process. The framework nests several leading theories of discrimination and de-

rives a rich set of testable empirical predictions.

We apply these tests in the context of racial representation in the U.S. mo-

tion picture industry. We show that non-white movies earn a box-office premium.

The gap is particularly pronounced at low quantiles of the distribution, suggest-

ing that non-white movies with low box-office potential are never produced; in

other words, non-white movies are held to a higher standard in the production

decision. In the context of our model, this evidence is consistent with taste-based

discrimination, i.e., producers suffering a utility loss from producing non-white

movies. The evidence is also consistent with producers and distributors having in-

accurate beliefs and systematically underestimating the revenue potential of non-

white movies. On the other hand, the evidence is not consistent with simple cus-

tomer discrimination against non-white movies, nor with a statistical discrimina-

tion story in which the signal sent by non-white movies is less precise.

These results may appear puzzling to the extent that they hint at lost profits

and relatively slow learning in the industry for non-white movies’ potential. While

our results indicate that the non-white revenue premium has more than halved be-

tween 1997-2007 and 2008-2017 (and become harder to distinguish from zero in a

statistical sense, despite the larger sample size,) the point estimate for the latter pe-

riod is far from zero in an economically significant way. Some of the a priori plausi-

ble explanations do not seem applicable to our setting: it is unlikely that learning is
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hindered by the non-white premium being too small to be detected or consequen-

tial, or that too few non-white movies are produced. The fact that – conditional

on production – non-white movies are relatively more successful rules out cus-

tomers’ attitudes and pre-market discrimination as leading explanations (Becker,

1957). We argue that other industry-specific forces might be at play, including

the high concentration of the motion picture industry, with the “Big Six” studios

typically accounting for more than 80% of the industry’s total market share. In

non-competitive industries, firms may have more latitude to indulge their discrim-

inatory taste. The introduction and growth of streaming services and smartphone

applications in the 2010s appear to have increased the amount of competition in

the industry (Kuehn & Lampe, 2023), which is consistent with the declining non-

white premium in the latter part of our sample. There are also documented chal-

lenges and uncertainty that industry actors face in predicting movies’ revenues

and profitability, even when data are available (Lash & Zhao, 2016).41 We leave

the investigation of this puzzle to future research, along with the analysis of the

consequences of the recent diversity-promoting rules that the Academy of Motion

Picture Arts and Sciences set for those aspiring to best-picture qualifications (Sper-

ling, 2020b,a).

While the specific application in this chapter looked at the motion picture in-

dustry, our model can be readily applied to other contexts in which decision mak-

ers can use group identifiers to screen applicants, and one can observe the outcome

or productivity of successful applicants: the output of workers hired for a partic-

ular job, the academic performance of students admitted to a freshman class, or

the number of citations accumulated by a published journal article. These other

41For discussions and examples in the public press, see Yahr (2016); Gladwell (2006); Thompson
(2013); Snee (2016).
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contexts are promising avenues for future research.
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TABLES AND FIGURES

Table 3.1: Model Predictions

Discrimination
Source

Mathematical
Definition

Comparative
Statics: Ex-
pected Value

Comparative
Statics:
Variance

Taste-based π0b > π0w Eb > Ew V arb < V arw

The producer bears a utility loss
producing non-white movies.

The production threshold is rel-
atively higher for non-white
movies.

Customer µb < µw Eb < Ew V arb < V arw

The viewing public has a prefer-
ence for white movies over non-
white movies.

The distribution of box-office
revenues for white movies is
shifted to the right, relative to
that of non-white movies.

Statistical σ2
yb > σ2

yw Eb < Ew V arb > V arw

The producer has “less” or
“worse” information on non-
white movies’ potential.

The signal for non-white movies
is less informative.

Legend: Summary of the model predictions. In our notation, w (b) denotes white
(non-white) movies; π0b, π0w are the type-specific production thresholds; µb, µw de-
note the type-specific means of the box-office revenue distributions; σ2

yb, σ
2
yw stand

for the type-specific signal variances. See Section 3.3 for the derivations.
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Table 3.2: Summary Statistics

(1) (2) (3) (4) (5)

VARIABLES N mean sd min max

PANEL A: Classification of movies by type

Share of non-white performers 7,840 0.12 0.24 0 1

At least one non-white 7,840 0.26 0.44 0 1

At least two non-whites 7,840 0.08 0.27 0 1

Distribution of the number of non-white performers (percentages):

0 74.3

1 17.9

2 4.5

3 2.1

4 1.3

PANEL B: Other variables

Gross revenue(in Millions of 2005 Dollars) 7,205 25.9 54.1 1.94 ∗ 10−5 804

Ln (Gross revenue) 7,205 14.14 3.39 2.97 20.50

Cost(in Millions of 2005 Dollars) 3,955 37.4 44.7 1.1 ∗ 10−3 907

Ln(Cost) 3,955 16.72 1.45 7.00 20.63

Run time(minutes) 6,804 103.51 18.49 38 600

IMDB score 4,915 6.25 0.97 1.50 9

Metacritic score 4,915 51.58 17.10 1 100

Average age of billed performers 7,715 41.92 10.42 10 99

Star power(in Millions) 7,840 262 303 0 2,350

Ln(Star power) 7,840 17.50 4.54 0 21.58

Number of weeks 6,491 11.62 14.66 1 476

Ln(Number of screens) 6,078 4.88 2.95 0.69 8.43

Distribution of movies by genre (percentages):

Action 16.62

Animation 0.17

Comedy 26.27

Drama 36.57

Other 20.37

Legend: Source: authors’ calculations. Data sources are described in Section 3.4.
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Table 3.3: The non-white revenue premium

(1) (2) (3) (4) (5) (6)

Sample: Full Full Full Full Non-missing cost Non-missing cost

Ln(Gross Rev) Ln(Gross Rev) Ln(Gross Rev) Ln(Gross Rev) Ln(Gross Rev) Ln(Gross Rev)

Race: at least 0.914∗∗∗ 0.926∗∗∗ 0.433∗∗∗ 0.336∗∗∗ 0.488∗∗∗ 0.522∗∗∗

two non-white (0.200) (0.183) (0.093) (0.076) (0.157) (0.096)

Share of -1.059∗∗∗ 0.180∗∗ 0.096 -0.732∗∗∗ 0.130

female (0.194) (0.084) (0.074) (0.203) (0.111)

ln(Star Power) 0.235∗∗∗ 0.023∗∗ 0.006 0.176∗∗∗ -0.033∗∗∗

(0.022) (0.010) (0.008) (0.020) (0.011)

Average age -0.065∗∗∗ -0.004 0.003 -0.036∗∗∗ -0.012∗∗∗

(0.006) (0.004) (0.003) (0.007) (0.004)

ln(Cost) 0.554∗∗∗ 0.403∗∗∗ 0.728∗∗∗

(0.051) (0.034) (0.044)

= 1 if ln(Cost) 6.249∗∗∗ 4.804∗∗∗

(0.736) (0.541)

Movie controls Y Y Y

Distributor FEs Y

N 6943 6943 6943 6943 3856 3856

R2 0.006 0.125 0.698 0.341 0.071 0.596

Legend: Data sources and specification are described in Sections 3.4 and 3.5. Cast
control variables include the share of females, the average age of the four top-
billed performers, and "star power" (defined as the log of performers’ cumulative
box office revenues up to the movie release date). Movie control variables include
indicators for movie genre, indicator of whether the movie is from the “Big 6”, run
time, Metacritic score, MPAA rating, year fixed effects, and indicators for missing
run time, Metacritic score, or MPAA rating. The movie budget cost (in the log)
is included among the control variables when revenue is the dependent variable.
Standard errors clustered by distributor in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗

p < 0.01.
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Table 3.4: Robustness: different definitions of “non-white” movies

(1) (2) (3) (4)

Race: At least two non-white At least one non-white Share of non-white Leading role is non-white

Ln(Gross Revenue) Ln(Gross Revenue) Ln(Gross revenue) Ln(Gross revenue)

Race 0.433∗∗∗ 0.227∗∗∗ 0.628∗∗∗ 0.464∗∗∗

(0.093) (0.061) (0.121) (0.081)

Q10 0.542∗∗∗ 0.237∗∗ 0.664∗∗∗ 0.502∗∗∗

(0.104) (0.113) (0.229) (0.100)

Q25 0.517∗∗∗ 0.263∗∗∗ 0.813∗∗∗ 0.520∗∗∗

(0.109) (0.059) (0.171) (0.122)

Q50 0.375∗∗∗ 0.215∗∗∗ 0.572∗∗∗ 0.334∗∗∗

(0.078) (0.060) (0.120) (0.089)

Q75 0.281∗∗ 0.189∗∗∗ 0.469∗∗∗ 0.327∗∗∗

(0.112) (0.049) (0.122) (0.099)

Q90 0.283∗∗∗ 0.188∗∗∗ 0.442∗∗∗ 0.302∗∗∗

(0.058) (0.061) (0.120) (0.062)

Cast controls Y Y Y Y

Movie controls Y Y Y Y

N 6943 6943 6943 6943

Legend: Data sources and specification are described in Sections 3.4 and 3.5. Cast
control variables include the share of females, the average age of the four top-
billed performers, and “star power” (defined as the log of performers’ cumulative
box office revenues up to the movie release date). Movie control variables include
indicators for movie genre, indicator of whether the movie is from the “Big 6”, run
time, Metacritic score, MPAA rating, year fixed effects, and indicators for missing
run time, Metacritic score, or MPAA rating. The movie budget cost (in the log)
is included among the control variables when revenue is the dependent variable.
Standard errors clustered by distributor in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗

p < 0.01.
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Table 3.5: Robustness to different dependent variables

(1) (2) (3)

Sample: Non-missing cost variable Non-missing cost variable Non-missing cost variable

Ln(Profit Margin+1) Profit(in million) Revenue(in million)

Race: At least two non-white 0.553∗∗∗ 8.722∗∗∗ 1.746

(0.095) (2.156) (3.004)

Q10 0.469∗∗∗ 5.849∗∗∗ 3.233∗∗∗

(0.114) (1.569) (0.919)

Q25 0.339∗∗∗ 6.934∗∗∗ 5.372∗∗∗

(0.095) (1.250) (1.192)

Q50 0.460∗∗∗ 8.352∗∗∗ 5.323∗∗∗

(0.104) (1.287) (1.654)

Q75 0.352∗∗∗ 9.494∗∗∗ 6.907∗∗

(0.085) (3.679) (3.368)

Q90 0.314∗∗∗ 11.883∗∗∗ 6.278

(0.072) (3.707) (6.384)

Cast controls Y Y Y

Movie controls Y Y Y

N 3856 3856 3856

Legend: Data sources and specification are described in Sections 3.4 and 3.5. Cast
control variables include the share of females, the average age of the four top-
billed performers, and “star power” (defined as the log of performers’ cumulative
box office revenues up to the movie release date). Movie control variables include
indicators for movie genre, indicator of whether the movie is from the “Big 6”, run
time, Metacritic score, MPAA rating, year fixed effects, and indicators for missing
run time, Metacritic score, or MPAA rating. The movie budget cost (in logs) is
included among the control variables when revenue is the dependent variable.
Standard errors clustered by distributor in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗

p < 0.01.
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Table 3.6: Conditional residual variance regressions:
robustness with respect to different definitions of non-white movies

(1) (2) (3) (4) (5) (6)

Race definition At least two At least two At least two At least one Share Leading role

Dependent variable: Ln(residual square)

Race -0.463∗∗∗ -0.471∗∗∗ -0.324∗∗∗ -0.117∗∗ -0.379∗∗∗ -0.212∗∗

(0.099) (0.098) (0.094) (0.059) (0.109) (0.083)

Cast Controls Y Y Y Y Y

Movie Controls Y Y Y Y

N 6943 6943 6943 6943 6943 6943

R2 0.003 0.012 0.121 0.123 0.122 0.117

Legend: Data sources and specification are described in Sections 3.4 and 3.5.5.
Cast control variables include the share of females, the average age of the four top-
billed performers, and “star power” (defined as the log of performers’ cumulative
box office revenues up to the movie release date). Movie control variables include
indicators for movie genre, indicator of whether the movie is from the “Big 6”, run
time, Metacritic score, MPAA rating, year fixed effects, and indicators for missing
run time, Metacritic score, or MPAA rating. The movie budget cost (in the log)
is included among the control variables when revenue is the dependent variable.
Standard errors are clustered by distributor in the main regressions only. Standard
errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.



127

Table 3.7: Heterogeneity Analysis

(1) (2) (3) (4) (5)

Distributor Distributor Genre: Genre: Genre:

Not Big-6 Big-6 Action/Adventure Comedy Drama

Race: At least two non-white 0.508∗∗∗ 0.355∗∗∗ 0.068 0.823∗∗∗ 0.395∗∗∗

(0.138) (0.089) (0.201) (0.178) (0.128)

Cast Controls Y Y Y Y Y

Movie Controls Y Y Y Y Y

P-Value of the difference 0.397 0.014

N 4766 2177 1135 1880 2590

(6) (7) (8) (9)

Period: Period: Gender: Gender:

Pre-2007 Post-2008 ≤50% female >50% female

Race: At least two non-white 0.567∗∗∗ 0.262∗ 0.408∗∗∗ 0.674∗∗

( 0.092) (0.133) (0.087) (0.307)

Cast Controls Y Y Y Y

Movie Controls Y Y Y Y

P-Value of the difference 0.041 0.365

N 2774 4169 5933 1010

Legend: Data sources and specification are described in Sections 3.4 and 3.5.5. In
all specifications, the sample is restricted to observations with non-missing data on
production costs. Cast control variables include the share of females, the average
age of the four top-billed performers, and “star power” (defined as the log of per-
formers’ cumulative box office revenues up to the movie release date). The movie
budget cost (in the log) is included among the control variables when revenue is
the dependent variable. Standard errors clustered by distributor in parentheses. ∗

p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 3.8: Producer Analysis

(1) (2) (3)

Producer Producer Producer

Sub-Sample Sub-Sample Sub-Sample

Dependent variable: Ln(gross revenue)

Cast: more than two non-white 0.271** 0.253* -0.004

(0.132) (0.132) (0.138)

Producer: more than one non-white 0.045 -0.081

(0.121) (0.126)

Cast x Producer 0.556**

(0.228)

Observations 1,955 1,955 1,955

R-squared 0.733 0.733 0.734

Baseline controls Y Y Y

Legend: Data sources and specification are described in Sections 3.4 and 3.5.7.
In all specifications, the sample is restricted to observations with some informa-
tion on the producer race. Cast control variables include the share of females, the
average age of the four top-billed performers, and "star power" (defined as the
log of performers’ cumulative box office revenues up to the movie release date).
Movie control variables include indicators for movie genre, indicator of whether
the movie is from the “Big 6”, run time, Metacritic score, MPAA rating, movie
budget cost (in the log), year fixed effects, and indicators for missing run time,
Metacritic score, MPAA rating, or budget cost. Standard errors clustered by dis-
tributor in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 3.9: Regressions of first-weekend theaters on number of
theaters

(1) (2) (3)

VARIABLES First-weekend First-weekend First-weekend

revenues, log revenues, log revenues, log

First-weekend 0.990*** 0.980*** 0.839***

# theaters, log (0.016) (0.017) (0.018)

Cast controls N Y Y

Movie controls N N Y

Residuals: white vs non-white

Average white -0.014 -0.014 -0.016

Average non-white 0.151 0.152 0.178

Average difference -0.165 -0.166 -0.194

p-value of t-test (two-sided) 0.001 0.001 0.000

N 6,276 6,276 6,276

R2 0.889 0.890 0.927

Legend: Data sources and specification are described in Sections 3.4 and 3.6. Cast
control variables include the share of females, the average age of the four top-
billed performers, and “star power” (defined as the log of performers’ cumulative
box office revenues up to the movie release date). Movie control variables include
indicators for movie genre, indicator of whether the movie is from the “Big 6”,
run time, Metacritic score, MPAA rating, year fixed effects, movie budget cost (in
the log), and indicators for missing run time, Metacritic score, MPAA rating, and
movie budget cost. Relative to the baseline sample used in Table 3.3, 633 obser-
vations are excluded due to missing data on first-weekend revenues or theaters,
while 55 are lost due do taking logs (zero values.) Standard errors clustered by
distributor in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Figure 3.1: Revenue distribution by number of non-white members
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Figure 3.2: Coefficients are decreasing over quantiles
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APPENDIX A

Supplementary Materials for Chapter One

A.1 PROOF OF THE THEOREMS

Proof of Proposition 1. For any d, d′ ∈ {0, 1}N . Consider any i ∈ I(d) ∩ I(d′).

By Definition 4 of imputable units, under Hϵs
0 , we have Yi(d) = Yi(d

′). Hence, by

Definition 6 of pairwise imputable statistics, T (YI(d)(d), d′) = T (YI(d)(d
′), d′).

Proof of Theorem 1. Given any α > 0, consider the subset of assignment

D ≡ {Dobs|pvalpair(Dobs) ≤ α/2}.

Therefore, we can denote P (pvalpair(Dobs) ≤ α/2) =
∑

Dobs∈D P (D
obs) = w. Since

EP (ϕ(D
obs)) = P (pvalpair(Dobs) ≤ α/2), to prove the theorem, we want to show

w < α.

Denote H(Dobs, D) = 1{T (YI(Dobs)(D
obs), D) ≥ T (YI(D)(D), Dobs)}. Then, by con-

struction, H(Dobs, D) +H(D,Dobs) ≥ 1.

Under Hϵs
0 , by Proposition 1 and Definition 9 of p-value,

pvalpair(Dobs) =
∑

D∈{0,1}N
H(Dobs, D)P (D).

Now, consider the term

∑
Dobs∈D

∑
D∈{0,1}N

H(Dobs, D)P (D)P (Dobs).
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On the one hand, it equals

∑
Dobs∈D

pvalpair(Dobs)P (Dobs) ≤ (α/2)(
∑

Dobs∈D

P (Dobs)) = wα/2.

On the other hand, by flipping D and Dobs in the same set D,

∑
Dobs∈D

∑
D∈D

H(Dobs, D)P (D)P (Dobs) =
∑
D∈D

∑
Dobs∈D

H(D,Dobs)P (Dobs)P (D)

=
∑
D∈D

∑
Dobs∈D

H(D,Dobs)P (D)P (Dobs)

=
∑

Dobs∈D

∑
D∈D

H(D,Dobs)P (D)P (Dobs).

Hence, we would have

∑
Dobs∈D

∑
D∈{0,1}N

H(Dobs, D)P (D)P (Dobs) ≥
∑

Dobs∈D

∑
D∈D

H(Dobs, D)P (D)P (Dobs)

=
∑

Dobs∈D

∑
D∈D

(H(D,Dobs) +H(Dobs, D))P (D)P (Dobs)/2

(By H(Dobs, Dobs) +H(Dobs, Dobs) = 2)

>
∑

Dobs∈D

∑
D∈D

P (D)P (Dobs)/2 = w2/2.

Hence, w2/2 < wα/2, implying w < α. As previously mentioned, using 1/2

to discount the number of equalities does not affect the test’s validity because

H(Dobs, D) +H(D,Dobs) ≥ 1 would still hold.

Too Many Potential Treatment Assignments. When the number of units N is

large, there would be 2N potential treatment assignments, which is a large number
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in practice. In such cases, givenDobs and Algorithm 1, we can show that ∥ ˆpval
pair

−

pvalpair(Dobs)∥ = Op(R
−1/2). Specifically, by ˆpval

pair
= (1+

∑R
r=1 1{Tr ≥ T obs

r })/(1+

R) and dr ∼ P independently, we have Edr
ˆpval

pair
= pvalpair(Dobs) and

V ar( ˆpval
pair

) = V ar(1{Tr ≥ T obs
r })/(1 + R)

= pvalpair(Dobs)(1− pvalpair(Dobs))/(1 + R).

Hence, by Chebyshev’s inequality, ∥ ˆpval
pair

− pvalpair(Dobs)∥ = Op(R
−1/2).

A.2 FRAMEWORK FOR INTERSECTION OF NULL HYPOTHESES

Some hypotheses of interest can be expressed as the intersection of the partially

sharp null hypotheses discussed in the main text. For example, Athey et al. (2018)

and Puelz et al. (2021) define the following null hypothesis regarding the extent of

interference at distance k:

Definition A.2.1 (Extent of Interference for Distance k in Puelz et al. (2021)). In a

social network, the null hypothesis at distance k states that for all i = 1, . . . , N ,

Yi(d) = Yi(d
′) for any d, d′ ∈ {0, 1}N such that dj = d′j for all j with d(i, j) ≤ k.

This hypothesis asserts that a unit’s outcome depends only on treatments

within k-hops, not beyond. Unlike the partially sharp null in Definition 1, which

requires potential outcomes to remain the same across one subset of assignments,

this hypothesis allows unit i’s outcome to change whenever a nearby unit j (with

d(i, j) ≤ k) switches treatment status. Nevertheless, for each combination of as-

signment statuses within k-distance, there is a subset of assignments yielding the
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same outcome for i.

Moreover, the null hypothesis in Definition A.2.1 differs from that in the main

text: each combination of treatment statuses within k-distance can be viewed as a

separate partially sharp null hypothesis. The main text, by contrast, focuses on a

particular partially sharp null in which all units within k-distance are untreated.

Nonetheless, the framework presented in this paper naturally extends to inter-

sections of partially sharp null hypotheses with minor modifications. We redefine

the partially sharp null hypothesis in terms of a collection Da = {Da
i }Ni=1:

Definition A.2.2 (Partially sharp null Hypothesis for Da). A partially sharp null hy-

pothesis holds if there exists a collection of subsets Da = {Da
i }Ni=1, where each Da

i ⊊

{0, 1}N , such that

HDa

0 : Yi(d) = Yi(d
′) for all i ∈ {1, . . . , N}, and any d, d′ ∈ Da

i .

Definition A.2.3 (Intersection of partially sharp null Hypotheses). For each a ∈ F =

{1, . . . , F} and the given Da, the intersection of partially sharp null hypotheses is defined

as ⋂
a∈F

HDa

0 := HF
0 ,

which is equivalent to

HF
0 : Yi(d) = Yi(d

′) for all i ∈ {1, . . . , N}, and any d, d′ s.t. ∃a ∈ Fwith d, d′ ∈ Da
i .

With slight adjustments to the definitions of imputable unit sets and pairwise

imputable statistics, our main procedure can also test intersection null hypotheses

HF
0 .
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A.2.1 Testing the Intersection of partially sharp null Hypotheses

Definition A.2.4 (Imputable Units (Intersection)). Given two treatment assignments

d, d′ ∈ {0, 1}N and an intersection of partially sharp null hypotheses HF
0 , define

I(d, d′) ≡
{
i ∈ {1, . . . , N} : ∃ a ∈ F s.t. d, d′ ∈ Da

i

}
⊆ {1, . . . , N}.

as the imputable units set under treatment assignments d and d′.

Definition A.2.5 (Imputable Outcome Vector (Intersection)). For d, d′ ∈ {0, 1}N and

an intersection of partially sharp null hypotheses HF
0 , the vector

YI(d,d′) ≡ {Yi}i∈I(d,d′).

is called the imputable outcome vector. If Y is evaluated under a third assignment d′′, then

YI(d,d′)(d
′′) ≡

{
Yi(d

′′)
}
i∈I(d,d′).

Definition A.2.6 (Pairwise Imputable Statistic (Intersection)). Let T : RN ×

{0, 1}N × {0, 1}N −→ R ∪ {∞} be a measurable function, and let YI(d,d′) be

the imputable outcome vector. We say T is a pairwise imputable statistic if, for any

d, d′ ∈ {0, 1}N , the following holds:

whenever Yi = Y ′
i for all i ∈ I(d, d′), then T

(
YI(d,d′), d

′) = T
(
Y ′
I(d,d′), d

′).
Proposition A.213. Suppose the intersection of partially sharp null hypotheses HF

0 holds.

Let T (YI(d,d′), d′) be a pairwise imputable statistic. Then

T
(
YI(d,d′)(d), d

′) = T
(
YI(d,d′)(d

′), d′
)



137

for any d, d′ ∈ {0, 1}N .

Definition A.2.7 (PIRT (Intersection)). A PIRT is an unconditional randomization test

defined by

ϕpair(Dobs) = 1
{
pvalpair(Dobs) ≤ α/2

}
,

where the p-value function pvalpair(Dobs) is given by

pvalpair(Dobs) = P
(
T
(
YI(Dobs,D)(D

obs), D
)
≥ T

(
YI(Dobs,D)(D

obs), Dobs
))

for D ∼ P,

and T (YI(d,d′), d′) is a pairwise imputable statistic.

Theorem A.2.1. Suppose the intersection of partially sharp null hypotheses HF
0 holds.

Then the PIRT in Definition A.2.7 satisfies

EP

[
ϕpair(Dobs)

]
< α for any α ∈ (0, 1),

where the expectation is taken over Dobs ∼ P .

The proofs follow the main text but use two treatment assignments when defin-

ing imputable units.

A.3 THE MINIMIZATION-BASED PIRT

The main limitation of the PIRT is that when rejecting the null hypothesis at sig-

nificance level α, the probability of a false rejection can be as high as 2α instead

of α. While one way to address this is to reject the null hypothesis when the p-

value is below α/2, a more conservative testing procedure inspired by Wen et al.

(2023) can be considered. The core idea behind this minimization-based PIRT is
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to compute a test statistic that reflects the worst-case scenario across all possible

treatment assignments. Specifically, I define the test statistic as

T̃ (Dobs) = min
d∈{0,1}N

T (YI(d)(D
obs), Dobs),

where the test statistic T is evaluated for each potential treatment assignment

d. Based on this, I define the p-value as follows.

Definition A.3.1 (Minimization-based PIRT). The minimization-based PIRT is an un-

conditional randomization test defined by ϕmin(Dobs) = 1{pvalmin(Dobs) ≤ α}, where

pvalmin(Dobs) : {0, 1}N → [0, 1] is the p-value function:

pvalmin(Dobs) = P (T (YI(Dobs)(D
obs), D) ≥ T̃ (Dobs)) for D ∼ P.

Here, T (YI(d)(d), d′) represents the pairwise imputable statistic used to evaluate the hy-

pothesis.

To calculate this p-value in practice, Algorithm A.3.1 is applied. It computes

the mean of 1 + R draws, where r = 0 corresponds to d = Dobs.

Algorithm A.3.1 Minimization-Based PIRT Procedure
Inputs : Test statistic T = T (Y (d), d), observed assignment Dobs, observed out-

come Y obs, treatment assignment mechanism P , and size α.
for r = 1 to R do

Randomly sample dr ∼ P , and store Tr ≡ T (YI(Dobs)(D
obs), dr).

Store T obs
r ≡ T (YI(dr)(D

obs), Dobs).
end
Compute: T̃ ⋆(Dobs) = minr=1,...,R(T

obs
r )

Output : p-value: ˆpval
min

=
1+

∑R
r=1 1{Tr≥T̃ ⋆(Dobs)}

1+R
.

Reject if ˆpval
min

≤ α.

In the toy example, shown in Table 1.6, T̃ (Dobs) = 1; thus, pvalmin = 1/2. The
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crucial distinction between minimization-based PIRT and PIRT is that minimiza-

tion ensures size control, as demonstrated by Theorem A.3.1.

Theorem A.3.1. Suppose the partially sharp null hypothesis Hϵs
0 holds. Then, the

minimization-based PIRT, as defined in Definition A.3.1, satisfies EP [ϕ
min(Dobs)] ≤ α

for any α ∈ (0, 1), where the expectation is taken with respect to Dobs ∼ P .

Proof of Theorem A.3.1. To avoid confusion, denote PDobs as probability respect

to Dobs and PD as probability respect to D.

Under the null Hϵs
0 , by Proposition 1 and setting d = D, d′ = Dobs,

we have T (YI(D)(D), Dobs) = T (YI(D)(D
obs), Dobs). Hence, we have T̃ (Dobs) =

mind∈{0,1}N (T (YI(d)(d), D
obs)).

Then, by construction, T̃ (Dobs) ∼ T̃ (D) ≤ T (YI(Dobs)(D
obs), D), and

pvalmin(Dobs) = PD(T (YI(Dobs)(D
obs), D) ≥ T̃ (Dobs)) ≥ PD(T̃ (D) ≥ T̃ (Dobs)).

Therefore,

PDobs(pvalmin(Dobs) ≤ α) ≤ PDobs(PD(T̃ (D) ≥ T̃ (Dobs)) ≤ α).

Let U be a random variable with the same distribution as T̃ (D), induced by

P . Denote its cumulative distribution function by FU . We then have PD(T̃ (D) ≥

T̃ (Dobs)) = 1 − FU{T̃ (Dobs)}, which is a random variable induced by Dobs ∼

P (Dobs). Hence, PD(T̃ (D) ≥ T̃ (Dobs)) = 1− FU(U), and by the probability integral

transformation, PD(T̃ (D) ≥ T̃ (Dobs)) respect to Dobs has a uniform [0, 1] distribu-

tion under Hϵs
0 . Thus, for any α ∈ [0, 1],
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PDobs(pvalmin(Dobs) ≤ α) ≤ PDobs(PD(T̃ (D) ≥ T̃ (Dobs)) ≤ α) ≤ α.

Handling a Large Number of Potential Treatment Assignments. When N is

large, finding the minimum T̃ (Dobs) across all possible treatment assignments can

be computationally intensive. To ensure the validity of Algorithm A.3.1 when

dealing with a large number of units, optimization methods can be used to ap-

proximate T̃R(Dobs) such that T̃ (Dobs) ≥ T̃R(Dobs)− ηR with probability 1− η. The

rejection level can then be adjusted to α̃ such that α = α̃(1−η)+η, thereby ensuring

validity. However, this approach introduces additional computational complexity.

An alternative strategy is to combine CRTs with PIRTs to reduce the space of

potential treatment assignments. As discussed by Athey et al. (2018) and Zhang

& Zhao (2023), researchers often limit the assignment space to only those assign-

ments with the same number of treated units as in the observed assignment. This

two-stage approach–first defining the number of treated units and then perform-

ing testing within the reduced assignment space–remains valid. Using PIRTs in

this context increases the set of focal units, potentially improving test power.

A.4 DISCUSSION ON SOME EXTREME CASES

Emptiness of Imputable Units Set. The emptiness of the imputable units set de-

pends on three factors: the distance being tested, the network structure, and the

randomization design.

First, the target distance interacts with the network structure. If the distance

ϵs > maxi,j Gi,j , meaning it exceeds any existing distance in the network, then
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there will be no units in the imputable units set. In this case, additional data may

be required to gain sufficient power for the test, or the target distance ϵs could be

reduced. For clarity in the following discussion, we focus on the case where ϵs = 0.

Second, with ϵs = 0, if all units in the sample are treated, the imputable units

set will still be empty. To detect the existence of interference, a sufficient number of

units beyond our target distance across various treatment assignments is necessary

to achieve reasonable power.

Cases with an Undefined Comparison Group. The distance being tested, net-

work structure, and randomization design also influence whether one of the com-

parison groups is undefined. To highlight the core intuitions, we focus on the case

where ϵs = 0, implying that we are testing for the existence of interference and not

all units are treated. Thus, some untreated units remain to conduct the test.

A general example is a network of couples, where exactly one unit in each pair

is treated. In the example from the main text, with treatment assignments rotating

across couples, the neighborhood units set may be empty. In practice, the test

statistic must then assume a very high value for implementation.

More generally, for each assignment d and given ϵc, let ∥{i : di = 1}∥ denote the

number of treated units, ∥{i : d ∈ Di(0)/Di(ϵc)}∥ the number of units in the neigh-

borhood set, and ∥{i : d ∈ Di(ϵc)}∥ the number in the control set. Whenever the

number of non-imputable units is equal to or exceeds the number of neighborhood

units, there may exist a pair of assignments (Dobs, D) such that the neighborhood

units set is empty. This principle also applies to the control units set. Therefore, to

ensure that both neighborhood and control sets are defined, we impose Assump-

tion A.44.
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Assumption A.44 (Regularization when ϵs = 0).

min

{
min

d∈{0,1}N
∥{i : d ∈ Di(0)/Di(ϵc)}∥, min

d∈{0,1}N
∥{i : d ∈ Di(ϵc)}∥

}

> max
d∈{0,1}N

∥{i : di = 1}∥

It is worth noting that ∥{i : di = 1}∥ = N − ∥I(d)∥ when ϵs = 0. Therefore, As-

sumption A.44 implies that the groups of interest occupy a large proportion of the

population across all treatment assignments. This condition depends on ϵc, the net-

work structure, and the experimental design. With Assumption A.44, we ensure

all comparison groups remain non-empty across different potential assignments.

Proposition A.414. Suppose Assumption A.44 holds. For any Dobs ∈ {0, 1}N , the pair-

wise imputable statistic T (YI(Dobs)(D
obs), D) ̸= ∞ across different D.

Proof of Proposition A.414. We proceed by contradiction. Assume there exists a

d ∈ {0, 1}N such that T (YI(Dobs)(D
obs), d) = ∞. Without loss of generality, suppose

for any i ∈ I(Dobs), d /∈ Di(ϵc). Then, for any unit j ∈ {i : d ∈ Di(ϵc)}, it must be the

case that j /∈ I(Dobs), and hence j ∈ {i : Dobs
i = 1}.

Thus, we have

∥{i : d ∈ Di(ϵc)}∥ ≤ ∥{i : Dobs
i = 1}∥

However, we have

∥{i : d ∈ Di(ϵc)}∥ ≥ min
d∈{0,1}N

∥{i : d ∈ Di(ϵc)}∥

and
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∥{i : Dobs
i = 1}∥ ≤ max

d∈{0,1}N
∥{i : di = 1}∥.

This implies that

min
d∈{0,1}N

∥{i : d ∈ Di(ϵc)}∥ ≤ max
d∈{0,1}N

∥{i : di = 1}∥,

which contradicts Assumption A.44.

A.5 FRAMEWORK TO DETERMINE THE BOUNDARY OF INTERFERENCE

Building on the PIRT framework, we can determine the boundary of interference

by estimating a sequence of partially sharp null hypotheses at varying distances ϵs.

This approach is useful for selecting a pure control distance or assessing the extent

of interference based on distance. To this end, I consider a sequence of distance

thresholds:

ϵ0 < ϵ1 < ϵ2 < · · · < ϵK <∞,

where K ≥ 1 is chosen to include the settings introduced in previous sections. For

instance, if the goal is to test for the existence of interference, one could set K = 1

with ϵ0 = ϵs = 0 and ϵ1 = ϵc.

Using this sequence of distances, I can test a series of null hypotheses as defined

in Definition 3, where ϵs ∈ {ϵ0, . . . , ϵK}. However, it is important to note that not

all distance levels will yield non-trivial power. First, there is a trade-off between

the number of thresholds tested and the power of each test. While testing more

thresholds provides a richer understanding of how interference varies with dis-

tance, it can reduce the power to detect interference, especially if certain threshold
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groups lack sufficient units. Based on simulation results, I recommend ensuring

that each exposure level includes at least 20 units to maintain sufficient power at a

significance level of α = 0.05.

Second, in some cases, ϵK may represent the maximum distance in the network,

leaving no further room for ϵc. Although it remains possible to test HϵK
0 , alter-

native approaches—such as adjusting for the number of nearby treated units, as

suggested by Hoshino & Yanagi (2023)—may be needed to construct a test statistic

with non-trivial power. For simplicity, this section will focus on testing Hϵk
0 for

k ≤ K − 1.

Following Definition 3 of Hϵs
0 , the multiple hypotheses under consideration ex-

hibit a nested structure:

Proposition A.515. Suppose there exists an index K̄ ≥ 0 such that for any k ≤ K̄ − 1,

the partially sharp null hypothesis Hϵk
0 is false and HϵK̄

0 is true. Then, Hϵk
0 is true for any

k ≥ K̄.

Proof of Proposition A.515. By Definition 3, if HϵK̄
0 is true, then Yi(d) = Yi(d

′) for

all i ∈ {1, . . . , N} and any d, d′ ∈ Di(ϵ
K̄).

Observe that for any i ∈ {1, . . . , N}, by Definition 2,

Di(ϵ0) ⊃ Di(ϵ1) ⊃ · · · ⊃ Di(ϵK).

Thus, for any k ≥ K̄ and any d, d′ ∈ Di(ϵk) ⊆ Di(ϵK̄), it follows that Yi(d) =

Yi(d
′) for all i ∈ {1, . . . , N}. By Definition 3, Hϵk

0 is true for any k ≥ K̄.

Proposition A.515 implies that interference is bounded within a certain dis-

tance. Given this nested structure, I aim to develop an inference method that de-

termines such boundaries by rejecting the null hypothesis up to a certain distance
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and failing to reject it beyond that point. However, in practice, situations may

arise where Hϵk
0 cannot be rejected but Hϵk+1

0 is rejected. This could happen either

because the test lacks power to reject the false null Hϵk
0 or due to multiple hypoth-

esis testing errors, which lead to an erroneous rejection of the true null Hϵk+1

0 . To

mitigate the risk of over-rejecting true null hypotheses, I propose controlling the

FWER.

Definition A.5.1 (FWER over allHϵk
0 for k = 0, . . . , K−1). Given a test φ : {0, 1}N →

{0, 1}K , which maps the data to decisions for each hypothesis Hϵk
0 , the family-wise error

rate (FWER) is defined as

FWER = P
(
∃k ≥ K̄ such that φk(D

obs) = 1, meaning that Hϵk
0 is rejected

)
,

where K̄ ≥ 0 is such that for any k ≤ K̄ − 1, Hϵk
0 is false, and for k ≥ K̄, Hϵk

0 is true.

The definition of the FWER in Definition A.5.1 is motivated by the nested struc-

ture of Hϵk
0 , where the null hypothesis is true for any k ≥ K̄. The critical issue is

determining how to reject all the Hϵk
0 hypotheses when identifying the boundary

of interference, while still ensuring control over the FWER.

A.5.1 A Valid Procedure to Determine the Neighborhood of Interference

A major challenge in testing the extent of interference with respect to distance lies

in addressing the issue of multiple hypothesis testing when conducting a series of

tests to identify the neighborhood of interference. To manage the increased error

rate arising from multiple tests, and drawing inspiration from Meinshausen (2008)

and Section 15.4.4 of Lehmann & Romano (2005), I propose Algorithm A.5.1.

Algorithm A.5.1 is designed to control the FWER while leveraging the nested
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Algorithm A.5.1 Sequential Testing Procedure
Inputs : Test statistic T = T (Y (d), d), observed assignmentDobs, observed outcome

Y obs, and treatment assignment mechanism P .
Set : K̂ = 0.
for k = 0 to K − 1 do

Test Hϵk
0 using the PIRT procedure and collect pvalk.

If pvalk ≤ α, set K̂ = k + 1 and reject Hϵk
0 .

If pvalk > α, break.
end
Output: Significant spillover within distance ϵK̂ .

structure of sequential hypothesis testing. Unlike traditional multiple hypothe-

sis testing procedures, such as the Bonferroni-Holm method, which require reject-

ing at a smaller level than α, this algorithm maintains the significance level with-

out adjustment, potentially increasing power compared to conventional methods

(Meinshausen, 2008). Moreover, if the unadjusted p-values increase as k increases,

indicating that interference diminishes with distance, there is no loss of power

compared to not adjusting for multiple hypothesis testing, as we would naturally

stop rejecting beyond a certain distance. When using the PIRT for each k, reject-

ing at the α/2 level ensures size control. For the partially sharp null hypothesis

Hϵk
0 , a natural choice for ϵc is ϵk+1. Theorem A.5.1 guarantees the FWER control of

Algorithm A.5.1.

Theorem A.5.1. The sequential testing procedure constructed by Algorithm A.5.1 con-

trols the FWER at α.

Proof of Theorem A.5.1. Without loss of generality, consider the minimization-

based PIRT below. The same proof holds when using the PIRT with a rejection

level of α/2.

Suppose for any k < K̄, Hϵk
0 s are false and H

ϵK̄
0 is true. Then, by Algorithm
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A.5.1, if there exist k ≥ K̄ such that Hϵk
0 is rejected, it must be the case that HϵK̄

0 is

rejected. Thus, by Definition A.5.1,

FWER = P (pval1 ≤ α, pval2 ≤ α, . . . , pvalK̄ ≤ α) ≤ P (pvalK̄ ≤ α) ≤ α

because HϵK̄
0 is true.

For example, suppose K = 2 with (ϵ0, ϵ1, ϵ2) = (0, 1, 2). Algorithm A.5.1 can be

implemented in two steps. First, collect pval0 for H0
0 and reject H0

0 if pval0 ≤ α.

If H0
0 is not rejected, report that no significant interference was found. If H0

0 is

rejected, proceed to the second step, collect pval1 for H1
0 , and reject H1

0 if pval1 ≤

α. If H1
0 is rejected, report significant interference within distance 2; if H2

0 is not

rejected, report significant interference within distance 1.

A.5.2 Rationale for Using the FWER

Controlling the family-wise error rate (FWER) is not the only option in multiple

testing. As Anderson (2008) suggests, a false discovery rate (FDR) control may be

more suitable for exploratory analyses by allowing a small number of type I errors

in return for greater power. An FDR-based approach could be explored in future

work. However, when policymakers intend to apply a policy in distant regions

under a positive interference effect, the more restrictive FWER control prevents

overly optimistic conclusions about the interference boundary. In such settings,

FWER provides a conservative distance threshold and better accounts for interfer-

ence in expected welfare calculations.

This procedure also aids in identifying a pure control group by defining a “safe

distance” ϵc, as mentioned in Section 1.3.1. One natural choice is ϵK , the great-

est distance at which non-trivial testing power remains. However, researchers
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might reduce this distance to include more control units and boost power. Algo-

rithm A.5.1 offers a principled method for selecting ϵc, but the resulting value may

be smaller than the true interference boundary due to the algorithm’s conservative

nature. Weighing these trade-offs is crucial when deciding whether to incorporate

a pre-testing step.

A.6 INCORPORATING COVARIATE ADJUSTMENT

In practice, we often have access to covariates X , and incorporating this informa-

tion is crucial for enhancing the power of tests, particularly when these covariates

are predictive of potential outcomes (Wu & Ding, 2021). Since the choice of test

statistic does not affect the validity of the testing procedure for the partially sharp

null hypothesis of interest, I propose three approaches for incorporating covariates

in the analysis.

The first approach is PIRT with regressions. As illustrated in the main text, this

method involves conducting the PIRT using regression coefficients from a simple

OLS model as the test statistic. This OLS model includes a binary variable indicat-

ing whether a unit receives spillovers at a certain distance and known covariates,

such as information about the neighborhood and social center points. A similar

approach is discussed in Puelz et al. (2021).

The second approach is PIRT with residual outcomes. The key idea here is to

use the residuals from a model-based approach, such as regression with covariates

of interest, rather than the raw outcome variables. I first obtain predicted values

Ŷi for the sample outcomes and then use the residuals, defined as the difference

between observed outcomes and predicted values êi = Y obs
i − Ŷi, for the PIRT pro-

cedures as the Y defined in the main text. A similar approach for FRTs is proposed
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by Rosenbaum (2020), with detailed discussion in Sections 7 and 9.2 of Basse &

Feller (2018).

The third approach is PIRT using pairwise residuals. In this method, for each

pair of treatment assignments (Dobs, D), I conduct a regression with covariates

within the imputable units set to transform the outcomes into residuals before

testing and constructing the p-values accordingly. This approach can be viewed

as combining the first and second methods.

A.6.1 Investigation on the Power of Incorporating Covariates

In this investigation, we extend the potential outcomes described in Table A.7.1

by incorporating two covariates, X1 and X2. The new control potential outcomes,

Y C
i (new), are simulated based on the original control outcomes Y C

i from Table

A.7.1 as follows:

Y C
i (new) = 2 + 0.5×X1 + 0.3×X2 + Y C

i ,

whereX1 is a binary covariate drawn from a Bernoulli distribution with parameter

0.5, and X2 is a continuous covariate drawn from a standard normal distribution:

X1 ∼ Bernoulli(0.5), X2 ∼ N (0, 1).

It is important to note that only the control potential outcomes, Y C
i , are modi-

fied by these covariates. The remaining potential outcomes for treated units follow

the same functional relationships as described in Table A.7.1. By introducing X1

and X2, the control potential outcomes become more variable, reflecting the added

noise from the covariates.
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Next, I apply the three methods introduced earlier—PIRT with regressions,

PIRT with residual outcomes, and PIRT using pairwise residuals—to construct the

power curves. The simulation procedure remains consistent with that described

in the main text, focusing on displacement effects and one-sided tests using non-

absolute coefficients.

Figure A.6.1: Power Comparison of Testing Methods for Different
Covariate Adjustments

Notes: The red line indicates the size level α = 0.05. Power is based on the PIRT
with rejection at level α. I consider 50 equally spaced values of τ between 0 and 1,
conducting 2,000 simulations for each τ to compute the average rejection rate for
each method.

Figure A.6.1 illustrates the power gains achieved by incorporating covariate

information. While all methods involving covariate adjustments demonstrate sim-

ilar power performance, leveraging covariates consistently results in higher power.

When τ = 0, the rejection rates for all methods align with the nominal size of the

test. As τ increases, the power also increases. For instance, when τ ≈ 0.25, the

power of the test with covariate adjustment reaches approximately 0.65, compared

to less than 0.4 for the test without covariate adjustments. Therefore, in practice,

researchers should select the method that best suits their specific context and data.
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A.6.2 Robustness of Results to Adjustment Methods

The application of the above methods yields the results presented in Table A.6.1.

The regression models closely follow the framework outlined in Blattman et al.

(2021), with slight modifications.

First, the regression includes the same covariates used in Blattman et al. (2021),

such as police station fixed effects, but excludes those related to the municipal ser-

vices intervention.1 In the original study, randomization testing was conducted

jointly for both the policing and municipal services interventions, complicating

interpretation when interaction effects are present. In this analysis, I hold the mu-

nicipal services intervention fixed to isolate the effect of intensive policing.

Second, Blattman et al. (2021) employs inverse propensity weighting in the

weighted regression, using weights that account for both the hotspot policing and

municipal services interventions.2 In this replication, I use weights that only con-

sider the hotspot policing intervention to focus specifically on the impact of inten-

sive policing.

As shown in Table A.6.1, the p-values are very similar across the different meth-

ods, allowing researchers to choose the most practical implementation. Addition-

ally, as discussed in Section C.3 of Basse et al. (2024), one can stratify potential

assignments based on covariates to balance the focal units. This is done by stratify-

ing both the permutations and the test statistic by an additional discrete covariate.

However, we could not implement and compare p-values from this method due to

1The covariates include the following: number of crimes (20122015); average patrol time per
day; square meters built (100 meters around) per meter of longitude; distance to the nearest shop-
ping center, educational center, religious/cultural center, health center, and additional services of-
fice (e.g., justice); transport infrastructure (e.g., bus/BRT station); indicators for industry/com-
merce zones and service sector zones; income level; eligibility for municipal services; and interac-
tions with the crime hotspot indicator.

2Although this method does not fully eliminate bias, as discussed in Aronow et al. (2020), it
helps address imbalance in the spillover group.
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Table A.6.1: p-Values: PIRT with Different Specifications

Unadjusted p-values
(0m,∞) (125m,∞) (250m,∞)

Violent crime
Reg (WLS) 0.105 0.719 0.158
Reg (OLS) 0.156 0.767 0.110
Pair residuals 0.119 0.726 0.142
Residuals outcome 0.114 0.757 0.166
Property crime
Reg (WLS) 0.508 0.232 0.619
Reg (OLS) 0.494 0.462 0.560
Pair residuals 0.481 0.252 0.565
Residuals outcome 0.455 0.250 0.578

Notes: The table shows p-values of PIRT across different methods, using the num-
ber of crimes as the outcome variable. Reg (WLS) is PIRT with regression, us-
ing the coefficient from the covariates-included regression with inverse propensity
weighting as the test statistic. Reg (OLS) is the PIRT with regression, using the
coefficient from the covariates-included regression without weighting as the test
statistic. Pair residuals are PIRT with pairwise residuals, where residuals are con-
structed from the pairwise subset regression in the first step. The coefficient from
the no-covariates regression with inverse propensity weighting is then used as the
test statistic. Residuals outcome is PIRT with the residuals outcome, where resid-
uals are constructed for all units in the first step, followed by using the coefficient
from the no-covariates regression with inverse propensity weighting as the test
statistic.

limitations in the original dataset.

In line with Puelz et al. (2021), including covariates raises p-values, suggesting

that distance alone may not capture all heterogeneity in spillover effects.3 Covari-

ates can reveal that the partially sharp null hypothesis does not fully account for

unit-level heterogeneity. In an extreme scenario, if spillovers are perfectly corre-

lated with these covariates, the partially sharp null would be rejected; however,

regression adjustment could then eliminate the spillover signal, raising p-values

3Most of this p-value increase stems from demographic covariates such as income levels and
building density.
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under the same null. Future research may refine distance measures by incorporat-

ing additional factors (e.g., socioeconomic disparities) to better capture spillover

intensity (Puelz et al., 2021).

Researchers should interpret these results cautiously and decide on the null

hypothesis of interest beforehand. If a researcher is interested in testing for no

spillover effects after controlling for covariates, PIRTs can be extended to accom-

modate the work by Ding et al. (2016). One can refer to Owusu (2023) for investi-

gating heterogeneous effects in network settings. Alternatively, if interested in the

weak null of the average effect being equal to zero (see Zhao & Ding (2020); Basse

et al. (2024)), one should note that the construction of p-values in PIRTs differs

from those in CRTs and FRTs, making classical approaches for weak nulls poten-

tially inapplicable. Further investigation into these differences would be of interest

to future research.

A.7 ALGORITHM FOR SIMULATION EXERCISE

I generate N = 1, 000 points from a bivariate Gaussian distribution with non-

diagonal covariance to simulate the network on a [0, 1] × [0, 1] space. Figure A.7.1

shows the unit distribution within this space.

I focus on two distance thresholds, with (ϵ0, ϵ1, ϵ2) = (0, 0.1, 0.2). Across differ-

ent treatment assignments, the distance interval (0, 0.1] comprises approximately

420 units, (0.1, 0.2] around 250 units, and the pure control group (0.2,∞) around

320 units.

The algorithm for the simulation exercise in Section 1.4.1 is outlined in Algo-

rithm A.7.1.
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Figure A.7.1: Unit Distribution

Table A.7.1: Potential Outcome Schedule in the Simulation

Pure control for non-hotspots: Y C
i ∼ Gamma(0.086, 3.081)

Pure control for hotspots: Y C
i ∼ Gamma(0.737, 1.778)

Treated unit: Y T
i = max(Y C

i − 1, 0)
Short-range spillover: Yi(d) = Y C

i + τ ∀d ∈ Di(0)/Di(0.1)
Long-range spillover: Yi(d) = Y C

i + 0.5τ ∀d ∈ Di(0.1)/Di(0.2)

Notes: The outcome schedule is calibrated to the observed dataset. For
Gamma(k, θ), k is the shape parameter and θ is the scale parameter. Y C

i repre-
sents the pure control potential outcome for unit i, and Y T

i represents the potential
outcome for unit i when treated.

Algorithm A.7.1 Simulation Study Procedure
Inputs : 5,000 randomly chosen assignments as the potential assignments set, DS .

The biclique decomposition of DS from Puelz et al. (2021).
Set : Spillover effect τ and corresponding schedule of potential outcomes.
for s = 1 : S do

Sample Dobs
s from DS , and generate Y obs

s .
Implement the algorithms and collect corresponding pval(Dobs

s ) using R =
1, 000.

end
Output: Average the number of rejections to obtain the power for that fixed τ .
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APPENDIX B

Supplementary Materials for Chapter Two

B.1 PROOFS FOR THE MAIN RESULTS

The proofs will make repeated use of the following mean-value identity.

Lemma B.11 (Outer Mean-Value Lemma). For any g(·) continuous differentiable on Θ

with Jacobian G(·), let G(θ1, θ2) =
∫ 1

0
G(ωθ1 + (1− ω)θ2)dω. For any θ1, θ2 ∈ Θ:

g(θ1)− g(θ2) = G(θ1, θ2)(θ1 − θ2).

Proof of Lemma B.11: Let h : [0, 1] → Rdg be defined as h(ω) = g(ωθ1+(1−ω)θ2),

so that g(θ1) − g(θ2) = h(1) − h(0) =
∫ 1

0
∂ωh(ω)dω. By composition and the chain

rule: ∂ωh(ω) = ∂θg(ωθ1+(1−ω)θ2)(θ1− θ2) = G(ωθ1+(1−ω)θ2)(θ1− θ2). Plug this

into the integral to find: g(θ1)− g(θ2) = G(θ1, θ2)(θ1 − θ2), as desired.

B.1.1 Implications of Assumption 1

In the following we will use the notation: gn(θ) = 1/n
∑n

i=1 g(θ; xi), g(θ) = E[gn(θ)],

G(θ; xi) = ∂θg(θ; xi), Gn(θ) = 1/n
∑n

i=1G(θ; xi), G(θ) = E[Gn(θ)], Qn(θ) =

gn(θ)
′Wngn(θ), and Q(θ) = g(θ)′Wg(θ). Wn and W are symmetric. With proba-

bility approaching 1 will be abbreviated as wpa1. BR(θ
†) is a closed ball of radius

R, centered around θ†.

Assumption B.15. With probability approaching 1: i. Qn has a unique minimum θ̂n ∈

interior(Θ), ii. gn is twice continuously differentiable, iii. Gn is Lipschitz continuous

with constant L ≥ 0, and for some RG > 0 such that, σmin[Gn(θ)] ≥ σ > 0 for all

∥θ − θ̂n∥ ≤ RG, iv. The parameters space Θ is convex and compact, v. Wn is such that

0 < λW ≤ λmin(Wn) ≤ λmax(Wn) ≤ λW <∞.
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Remarks. The condition that xi are iid can also be weakened to allow for non-

identically distributed dependent observations by appropriately adjusting the mo-

ment conditions in 1i, iii which are used to derive uniform laws of large numbers

for gn and Gn.

Lemma B.12. Assumption 1 implies Assumption B.15.

Lemma B.13. Suppose Assumption 1 holds. Then, for some r > 0, Assumption 2 (a)

holds for all θ ∈ Br(θ
†) with the same choice of ρ, σ.

The following results are stated in terms of Gn(θ) =
∫ 1

0
{Gn(ωθ+ (1− ω)θ̂n)}dω.

Assumption B.16. With probability approaching 1, for all θ ∈ Θ: (a)

σmin[Gn(θ)
′WnGn(θ)] ≥ ρσ, (b) ∥Gn(θ)

′WnGn(θ)(θ − θ†)∥ ≥ ρσ∥θ − θ†∥.

Lemma B.14. Suppose Assumptions 1 holds. 1) If Assumption 2 (a) holds, Assumption

B.16 (a) holds. 2) If Assumption 2 (b), Assumption B.16 (b) holds.

Proof of Lemma B.12. In the following, all the strict inequalities are replaced by

weak inequalities with some slackness δ > 0, e.g. σmin(G(θ)) ≥ (1+δ)σ > 0 instead

of σmin(G(θ)) > σ > 0, and λmax(W ) ≤ (1− δ)λW < ∞ instead of λmax(W ) < λW <

∞. Assumption B.15ii, iv follow from 1ii, iv. Use Weyl’s perturbation inequality

for singular values (Bhatia, 2013, Problem III.6.5) to find λmin(Wn) ≥ λmin(W ) −

σmax(Wn −W ) ≥ (1 + δ)λW − op(1) ≥ λW , wpa 1. Likewise, λmax(Wn) ≤ λW , wpa1.

This yields Assumption B.15v.

Assumption 1iii and compactness imply uniform convergence of the sample

Jacobian supθ∈Θ ∥Gn(θ) − G(θ)∥ = op(1), see Jennrich (1969). We also have uni-

form convergence for the same moments. Condition ii implies gn(θ) − g(θ) =

op(1), for all θ. Notice that ∥[gn(θ1) − g(θ1)] − [gn(θ2) − g(θ2)]∥ = ∥[Gn(θ1, θ2) −
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G(θ1, θ2)](θ1 − θ2)∥ ≤ [supθ∈Θ ∥Gn(θ) − G(θ)∥]∥θ1 − θ2∥, where the sup is a op(1) by

uniform convergence of Gn, and G(θ1, θ2) =
∫ 1

0
G(ωθ1+(1−ω)θ2)dω. Using a finite

cover and arguments similar to Jennrich (1969), this implies uniform convergence:

supθ∈Θ ∥gn(θ)− g(θ)∥ = op(1).

Then, uniform convergence of gn and Wn
p→ W imply uniform converge of

Qn to Q. Continuity and the global identification condition 1i. imply θ̂n
p→ θ†

(Newey & McFadden, 1994, Th2.1). This implies that ∥θ − θ̂n∥ ≤ RG ⇒ ∥θ − θ†∥ ≤

RG + op(1) ≤ (1 + δ)RG, wpa 1, i.e. BRG
(θ̂n) ⊆ B(1+δ)RG

(θ†) ⊆ Θ. This implies

θ̂n ∈ interior(Θ), wpa1. Then, for the same θ, σmin[G(θ)] ≥ (1 + δ)σ, wpa1. Apply

Weyl’s inequality for singular values to find that, uniformly in θ: σmin[Gn(θ)] ≥

σmin[Gn(θ)] − σmax[G(θ) − Gn(θ)] ≥ (1 + δ)σ − op(1) ≥ σ > 0, wpa 1. Take any two

θ1, θ2 in Θ, ∥Gn(θ1) − Gn(θ2)∥ ≤ 1/n
∑n

i=1 L̄(xi)∥θ1 − θ2∥ ≤ [(1 − δ)L + op(1)]∥θ1 −

θ2∥ ≤ L∥θ1 − θ2∥, wpa1, using a law of large numbers for L̄(xi). This yields all the

conditions in Assumption B.15iii.

Proof of Lemma B.13: Under Assumption 1, σmin[G(θ)] ≥ (1 + δ)σ for all θ ∈

BRG
(θ†) and some δ > 0. Also, G is Lipschitz continuous with constant L since

∥G(θ1) − G(θ2)∥ ≤ E[∥G(θ1; xi) − G(θ2; xi)∥] ≤ L∥θ1 − θ2∥. As a result, ∥G(θ) −

G(θ†)∥ ≤ L∥θ − θ†∥. Then,

∥G(θ)′WG(θ)−G(θ†)′WG(θ†)∥ ≤ 2σλWL∥θ − θ†∥.

Apply Weyl’s inequality to find:

σmin[G(θ)
′WG(θ)] ≥

{
(1 + δ)[λWσ]− 2

σλWL

σ
∥θ − θ†∥

}
σ.
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Pick ∥θ− θ†∥ ≤ r with r such that δ > 2σLλW/[λWσ
2]r to find: σmin[G(θ)

′WG(θ)] >

[λWσ]σ, given that 0 < ρ ≤ λWσ in Assumption 2 (a), this yields the result.

Proof of Lemma B.14. Lemma B.12 applies so that Assumption B.15 holds.

Hence, Gn is uniformly convergent and Lipschitz continuous, θ̂n is consistent. 1)

This implies that:

∥Gn(θ)−G(θ)∥ = ∥
1∫

0

{Gn(ωθ + (1− ω)θ̂n)−G(ωθ + (1− ω)θ†)}dω∥

≤ L∥θ̂n − θ†∥+ sup
θ∈Θ

∥Gn(θ)−G(θ)∥ = op(1).

Then apply Weyl’s inequality to find that, uniformly in θ and wpa1: σmin[Gn(θ)] ≥

σmin[G(θ)] − op(1), σmin[Gn(θ)] ≥ σmin[G(θ)] − op(1), and σmin[Gn(θ)
′WnGn(θ)] ≥

σmin[G(θ)
′WG(θ)]− op(1), which yields the result.

2) Lemma B.13 implies Assumption 2 (a) holds locally, i.e. for ∥θ−θ†∥ ≤ r, with

r > 0. With the derivations above, this implies that Assumption B.16 (a) holds

locally as well, i.e. for ∥θ − θ̂n∥ ≤ r/2, wpa1. Recall that Assumption B.16 (a)

implies Assumption B.16 (b).

Take ∥θ−θ̂n∥ ≥ r/2. By uniform consistency and boundedness ofGn andGn, we

have: Gn(θ)
′WnGn(θ) = G(θ)′WG(θ) + op(1), uniformly in θ using σmax[Gn(θ)] ≤ σ

wpa1. Since θ̂n is consistent, we have uniformly in ∥θ − θ̂n∥ ≥ r/2:

∥Gn(θ)
′WnGn(θ)(θ − θ̂n)∥ ≥ ∥G(θ)′WG(θ)(θ − θ̂n)∥ − op(1)∥θ − θ̂n∥

≥ ∥G(θ)′WG(θ)(θ − θ†)∥ − op(1)∥θ − θ̂n∥ − σ2λWop(1)

≥ (1 + δ)ρσ∥θ − θ†∥ − op(1)∥θ − θ̂n∥ − σ2λWop(1)
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≥ [(1 + δ)ρσ − op(1)]∥θ − θ̂n∥ − [σ2λW + (1 + δ)ρσ]op(1)

≥
[
(1 + δ)ρσ − op(1)− op(1)2

σ2λW + (1 + δ)ρσ

r

]
∥θ − θ̂n∥,

using ∥θ− θ̂n∥/(r/2) ≥ 1 for the last inequality. The leading term is greater or equal

than ρσ wpa1 which yields the result.

B.1.2 Proofs for Section 2.2.1

Proof of Proposition 2 (Gauss-Newton). Take θk ∈ Θ, the update (2.1) can be

re-written as:

θk+1 − θ̂n =
(
Id − γPkGn(θk)

′WnGn(θk)
)
(θk − θ̂n)

− γPkGn(θk)
′Wn[gn(θk)−Gn(θk)(θk − θ̂n)].

(B.1.1)

For GN, PkGn(θk)
′WnGn(θk) = Id so that we have:

θk+1 − θ̂n =(1− γ)(θk − θ̂n)

− γPkGn(θk)
′Wn[gn(θk)− gn(θ̂n)−Gn(θk)(θk − θ̂n)]

− γPk[Gn(θk)−Gn(θ̂n)]
′Wngn(θ̂n),

(B.1.1’)

using the first-order condition Gn(θ̂n)
′Wngn(θ̂n) = 0. From Assumption B.15, there

existsRG > 0 such that: σ ≤ σmin[Gn(θk)] for any ∥θk−θ̂n∥ ≤ RG, which implies that

Pk is well defined and bounded. Since Gn is Lipschitz continuous with constant

L ≥ 0:

∥PkGn(θk)
′Wn[gn(θk)− gn(θ̂n)−Gn(θk)(θk − θ̂n)]∥ ≤ σ−1

√
λW/λWL∥θk − θ̂n∥2,
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We also have:

∥Pk[Gn(θk)−Gn(θ̂n)]
′Wngn(θ̂n)∥ ≤ σ−2(

√
λW/λW )L∥gn(θ̂n)∥Wn∥θk − θ̂n∥.

Combine these two inequalities into (B.1.1’) to find:

∥θk+1 − θ̂n∥ ≤(
1− γ + γ

[
σ−1

√
λW/λWL∥θk − θ̂n∥+ σ−2(

√
λW/λW )L∥gn(θ̂n)∥Wn

])
∥θk − θ̂n∥.

(B.1.1”)

Now take any γ̃ ∈ (0, γ), let:

R̃n =
γ − γ̃

γ

[
L−1σ

√
λW/λW

]
− (σ−1/

√
λW )∥gn(θ̂n)∥Wn .

Let Rn = min(R̃n, RG), for any ∥θk − θ̂n∥ ≤ Rn, we have ∥θk+1 − θ̂n∥ ≤ (1− γ̃)∥θk −

θ̂n∥ ≤ Rn. By recursion, we then have for any ∥θ0 − θ̂n∥ ≤ Rn:

∥θk+1 − θ̂n∥ ≤ (1− γ̃)∥θk − θ̂n∥ ≤ · · · ≤ (1− γ̃)k+1∥θ0 − θ̂n∥,

as stated in (2.2).

Proof of Proposition 2 (General Case). Take θk ∈ Θ, the update (2.1) can be re-

written as:

θk+1 − θ̂n =
(
Id − γPkGn(θk)

′WnGn(θk)
)
(θk − θ̂n)

− γPkGn(θk)
′Wn[gn(θk)−Gn(θk)(θk − θ̂n)].

(B.1.1)
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Taking norms on both sides this identity yields:

∥θb+1 − θ̂n∥ ≤σmax

[
Id − γPkGn(θk)

′WnGn(θk)
]
∥θb − θ̂n∥

+ γ∥PkGn(θk)
′Wn[gn(θk)−Gn(θk)(θk − θ̂n)]∥,

(B.1.1’)

where σmax returns the largest singular value. We will now bound each of

these two terms. First, note that σmax[Id − γPkGn(θk)
′WnGn(θk)] = σmax[Id −

γP
1/2
k Gn(θk)

′WnGn(θk)P
1/2
k ] = maxj=1,...,d |λj[Id − γP

1/2
k Gn(θk)

′WnGn(θk)P
1/2
k ]|,

where λj are the eigenvalues. Because this is a difference of Hermitian matrices,

Weyl’s perturbation inequality (Bhatia, 2013, Corollary III.2.2) implies the follow-

ing bounds:

1− γλmax[P
1/2
k Gn(θk)

′WnGn(θk)P
1/2
k ] ≤ λmin[Id − γP

1/2
k Gn(θk)

′WnGn(θk)P
1/2
k ]

≤ λmax[Id − γP
1/2
k Gn(θk)

′WnGn(θk)P
1/2
k ]

≤ 1− γλmin[P
1/2
k Gn(θk)

′WnGn(θk)P
1/2
k ].

Let σ = maxθ∈Θ σmax[Gn(θ)], suppose 0 < γ < [λPλWσ
2]−1, we then have:

0 ≤ 1− γλmax[P
1/2
k Gn(θk)

′WnGn(θk)P
1/2
k ] ≤ 1− γλmin[P

1/2
k Gn(θk)

′WnGn(θk)P
1/2
k ],

so that we are only concerned with the upper bound. From Assumption B.15,

∥θ − θ̂n∥ ≤ RG ⇒ σmin[Gn(θ)] ≥ σ. Combine with the bound for γ to find:

0 ≤ σmax[Id − γPkGn(θk)
′WnGn(θk)] ≤ 1− γλPλWσ

2 < 1,
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for any choice of γ ∈ (0, [λPλWσ
2]−1). For the second term in (B.1.1), using the

identity Gn(θ̂n)
′Wngn(θ̂n) = 0 and Lemma B.11:

PkGn(θk)
′Wn[gn(θk)−Gn(θk)(θk − θ̂n)] =PkGn(θk)

′Wn[Gn(θk)−Gn(θk)](θk − θ̂n)

+ Pk[Gn(θk)−Gn(θ̂n)]
′Wngn(θ̂n),

where Gn(θk) =
∫ 1

0
{Gn(ωθk + (1− ω)θ̂n)}dω. Since Gn is Lipschitz continuous with

constant L ≥ 0:

∥(B.1.1′)∥ ≤ (1− γλPλWσ
2)∥θb − θ̂n∥+ γλPλWσL∥θb − θ̂n∥2

+ γλPλ
1/2

W L∥gn(θ̂n)∥Wn∥θb − θ̂n∥

=
(
1− γλPλWσ

2 + γ
[
λPλWσL∥θb − θ̂n∥

+ λPλ
1/2

W L∥gn(θ̂n)∥Wn

])
∥θb − θ̂n∥.

Let c1 = λPλWσL, c2 = λPλ
1/2

W L, pick γ̃ ∈ (0, γλPλWσ
2), and assume:

∥θk − θ̂n∥ ≤ γλPλWσ
2 − γ̃

γc1
− c2
c1
∥gn(θ̂n)∥Wn := R̃n. (B.1.2)

Take Rn = min(RG, R̃n), ∥θk − θ̂n∥ ≤ Rn implies that, by construction:

∥θk+1 − θ̂n∥ ≤ (1− γ̃)∥θk − θ̂n∥ ≤ · · · ≤ (1− γ)k+1∥θ0 − θ̂n∥,

by recursion, if ∥θ0 − θ̂n∥ ≤ Rn.

Proof of Theorem 2 In the just-identified case, we will repeatedly use the iden-

tities gn(θ̂n) = 0 and Qn(θ̂n) =
1
2
gn(θ̂n)

′Wngn(θ̂n) = 0. Take any θ ∈ Θ, by Lemma
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B.11, gn(θ) = Gn(θ)(θ − θ̂n) which implies:

(
1

2
min
θ∈θ

λmin[Gn(θ)
′WnGn(θ)]

)
∥θ − θ̂n∥2 ≤ Qn(θ)

≤
(
1

2
max
θ∈θ

λmax[Gn(θ)
′WnGn(θ)]

)
∥θ − θ̂n∥2,

and, using the full rank assumption, let 0 < λ ≤ λ < ∞, denote respectively the

min and the max. This yields an equivalence between the two distances ∥θ − θ̂n∥

and Qn(θ). Apply the Mean Value Theorem to Qn, for some θ̃k between θk and θk+1

in (2.1):

Qn(θk+1) = Qn(θk) + ∂θQn(θk)
′(θk+1 − θk) + [∂θQn(θ̃k)− ∂θQn(θk)]

′(θk+1 − θk),

(B.1.3)

where ∂θQn(θk) = Gn(θk)
′Wngn(θk) and θk+1 − θk = −γPkGn(θk)

′Wngn(θk). This

yields a first inequality:

∂θQn(θk)
′(θk+1 − θk) = −γgn(θk)′W 1/2

n

(
W 1/2

n Gn(θk)PkGn(θk)
′W 1/2

n

)
W 1/2

n gn(θk)

≤ −γc1∥gn(θk)∥2Wn
,

where c1 := minθ∈Θ λmin[W
1/2
n Gn(θ)PkGn(θ)

′W
1/2
n ] > 0, using the full rank assump-

tion, and ∥gn(θk)∥2Wn
= Qn(θk). For the second inequality, since gn is twice continu-

ously differentiable and Θ is compact, ∂θQn is Lipschitz continuous with constant

LQ ≥ 0. This implies:

∥[∂θQn(θ̃k)− ∂θQn(θk)]
′(θk+1 − θk)∥ ≤ LQ∥θ̃k − θk∥ × ∥θk+1 − θk∥ ≤ LQ∥θk+1 − θk∥2

≤ γ2c2∥gn(θk)∥2Wn
,
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since ∥θk+1 − θk∥ = γ∥PkGn(θk)
′Wngn(θk)∥ and ∥θ̃k − θk∥ ≤ ∥θk+1 − θk∥, setting

c2 := LQ maxθ∈Θ σ
2
max[PkGn(θ)

′W
1/2
n ] < +∞. Combine the two inequalities into

(B.1.3) to find:

Qn(θk+1) ≤ (1− γc1 + γ2c2)Qn(θk),

for any θk ∈ Θ. The polynomial P (γ) = 1−γc1+γ2c2 is such that P (0) = 1, dγP (0) <

0 which implies P (γ) ∈ (0, 1) strictly for any γ > 0 sufficiently small. Take any such

γ and let (1 − γ)2 = P (γ) ∈ (0, 1) for some γ ∈ (0, 1), by construction. Take any

θ0 ∈ Θ, by recursion:

Qn(θk+1) ≤ (1− γ)2Qn(θk) ≤ · · · ≤ (1− γ)2(k+1)Qn(θ0).

Now apply the distance equivalence derived earlier to get the desired result:

∥θk+1 − θ̂n∥ ≤ (1− γ)k+1

√
λ/λ∥θ0 − θ̂n∥.

Proof of Theorem 3. The general layout of the proof is similar to the just-

identified case. Differences arise because Qn(θ̂n) ̸= 0 in general and Gn(θ) only

has rank dθ which is less than the dimension of gn so that several parts of the proof

do not apply anymore. First:

Qn(θ)−Qn(θ̂n) =

1

2

[
gn(θ)− gn(θ̂n)

]′
Wn

[
gn(θ)− gn(θ̂n)

]
+
[
gn(θ)− gn(θ̂n)

]′
Wngn(θ̂n)

The leading term equals 1
2
(θ− θ̂n)′Gn(θ)

′WnGn(θ)(θ− θ̂n) which can be bounded
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above and below using the same approach as before. For the last term, use the

first-order condition Gn(θ̂n)
′Wngn(θ̂n) = 0 to get, using gn(θ) − gn(θ̂n) = [Gn(θ) −

Gn(θ̂n) +Gn(θ̂n)](θ − θ̂n):

∥[gn(θ)− gn(θ̂n)]
′Wngn(θ̂n)∥

≤
√
λmax(Wn)∥θ − θ̂n∥ × ∥Gn(θ̂n)−Gn(θ)∥ × ∥gn(θ̂n)∥Wn

≤
√
λmax(Wn)L∥gn(θ̂n)∥Wn∥θ − θ̂n∥2,

where L ≥ 0 is the Lipschitz constant of Gn. Let 0 < λ =

minθ∈Θ λmin[Gn(θ)
′WnGn(θ)] ≤ λ = maxθ∈Θ λmax[Gn(θ)

′WnGn(θ)] < ∞, apply the

triangular inequality and its reverse to find the relation:

(
λ− C∥gn(θ̂n)∥Wn

)
∥θ − θ̂n∥2 ≤ 2[Qn(θ)−Qn(θ̂n)] ≤

(
λ+ C∥gn(θ̂n)∥Wn

)
∥θ − θ̂n∥2,

(B.1.4)

where C := 2
√
λmax(Wn)L ≥ 0 is finite. As in the just-identified case, we can write:

Qn(θk+1) = Qn(θk) + ∂θQn(θk)
′(θk+1 − θk) + [∂θQn(θ̃k)− ∂θQn(θk)]

′(θk+1 − θk),

and bound each of the last two terms. As before, we have:

∂θQn(θk)
′(θk+1 − θk) = −γgn(θk)′WnGn(θk)PkGn(θk)

′Wngn(θk),

However, dim(W
1/2
n gn(θk)) > rank[W 1/2

n Gn(θk)PkGn(θk)
′W

1/2
n ], the model being

over-identified. Hence, we only have ∂θQn(θk)
′(θk+1 − θk) ≤ 0 which, unlike the

just-identified case, does not imply a strict contraction. Nevertheless, we have
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gn(θk) = Gn(θk)(θk − θ̂n) + gn(θ̂n) where dim(θk − θ̂n) equals the rank of the matrix

above. Let Ak = W
1/2
n Gn(θk)PkGn(θk)

′W
1/2
n :

−γgn(θk)′WnGn(θk)PkGn(θk)
′Wngn(θk)

=− γ
[
gn(θk)− gn(θ̂n)

]′
W 1/2

n AkW
1/2
n

[
gn(θk)− gn(θ̂n)

]
(B.1.5)

− γgn(θ̂n)
′W 1/2

n AkW
1/2
n gn(θ̂n) (B.1.6)

− 2γgn(θ̂n)
′W 1/2

n AkW
1/2
n

[
gn(θk)− gn(θ̂n)

]
. (B.1.7)

Now, bound these terms one at a time:

(B.1.5) = −γ(θk − θ̂n)
′Gn(θk)

′W 1/2
n AkW

1/2
n Gn(θk)(θk − θ̂n)

≤ −γc1n[Qn(θk)−Qn(θ̂n)],

where the last inequality comes from (B.1.4) above, and

c1n := min
θk∈Θ

λmin[Gn(θk)
′W 1/2

n AkW
1/2
n Gn(θk)](λ/2 + C/2∥gn(θ̂n)∥Wn)

−1 > 0,

is bounded below by a strictly positive value with probability approaching 1, us-

ing Assumption 3 and Lemma B.14.1 To see why Lemma B.14 (ii) is critical, no-

tice that Gn(θk)
′W

1/2
n AkW

1/2
n Gn(θk) = Gn(θk)

′WnGn(θk)PkGn(θk)
′WnGn(θk) is sym-

metric and has full rank if both Gn(θk)
′WnGn(θk) and Pk have full rank. Both

Lemma B.14 (ii) and Assumption 3 need to hold for c1n to be non-zero. Then

(B.1.6) ≤ −γQn(θ̂n)λmin(Ak) ≤ 0. For the remaining term, apply the Cauchy-

1An explicit lower bound is given in the proof of Theorem 4.
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Schwarz inequality, Lemma B.11, and (B.1.4) to find the last bound:

∥(B.1.7)∥ ≤ 2γ

√
Qn(θ̂n)

maxθ∈Θ σmax[AkW
1/2
k Gn(θ)]

[λ/2− C/2∥gn(θ̂n)∥Wn ]
1/2

[Qn(θk)−Qn(θ̂n)]
1/2

Let c3n := 2maxθ∈Θ σmax[AkW
1/2
k Gn(θ)][λ/2 − C/2∥gn(θ̂n)∥Wn ]

−1/2. As in the just-

identified case, ∂θQn is Lipschitz continuous with constant LQ ≥ 0, which yields

the same inequality as in the proof of Theorem 2:

∥[∂θQn(θ̃k)− ∂θQn(θk)]
′(θk+1 − θk)∥ ≤ γ2LQ max

θ∈Θ
σ2
max[PkGn(θ)

′W 1/2
n ]Qn(θk).

Let c2 := LQ maxθ∈Θ σ
2
max[PkGn(θ)

′W
1/2
n ] ≥ 0. Combine all the inequalities above to

get:

Qn(θk+1)−Qn(θ̂n) ≤ (1− γc1n + γ2c2)[Qn(θk)−Qn(θ̂n)]

+ γ2c2Qn(θ̂n) + γc3n

√
Qn(θ̂n)

[
Qn(θk)−Qn(θ̂n)

]1/2
.

Because of the square root on Qn(θk) − Qn(θ̂n), this is a non-linear recursion. To

derive explicit convergence results, we will bound it by a linear recursion using:

i. If [Qn(θk)−Qn(θ̂n)]
1/2 ≥ 2c3n/c1n

√
Qn(θ̂n), then:

Qn(θk+1)−Qn(θ̂n) ≤ (1− γ
c1n
2

+ γ2c2)[Qn(θk)−Qn(θ̂n)] + γ2c2Qn(θ̂n).

ii. Otherwise:

Qn(θk+1)−Qn(θ̂n) ≤ (1−γc1n+γ2c2)[Qn(θk)−Qn(θ̂n)]+

(
γ2c2 + 2γ

c23n
c1n

)
Qn(θ̂n).
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A majorization of these two bounds implies:

Qn(θk+1)−Qn(θ̂n) (B.1.8)

≤
(
1− γ

c1n
2

+ γ2c2

) [
Qn(θk)−Qn(θ̂n)

]
+

(
γ2c2 + 2γ

c23n
c1n

)
Qn(θ̂n).

(B.1.9)

Let Pn(γ) = (1 − γ c1n
2

+ γ2c2). Then, using the same arguments as in the just-

identified case, for γ > 0 sufficiently small, we have Pn(γ) = (1 − γ)2 ∈ (0, 1), i.e.

(2.1) is a strict contraction globally. Iterate on the recursion to find:

Qn(θk+1)−Qn(θ̂n) ≤ (1− γ)2(k+1)[Qn(θ0)−Qn(θ̂n)] +
γ2c2 + 2γ

c23n
c1n

1− (1− γ)2
Qn(θ̂n).

Apply the distance equivalence to find:

∥θk+1 − θ̂n∥2 ≤(1− γ)2(k+1)
(
λ/2− C/2∥gn(θ̂n)∥Wn

)−1

[Qn(θ0)−Qn(θ̂n)]

+
(
λ/2− C/2∥gn(θ̂n)∥Wn

)−1 γ2c2 + 2γ
c23n
c1n

1− (1− γ)2
Qn(θ̂n).

For the choice of γ > 0 which yields the result, there exists a Rn > 0 for which

Proposition 2 holds. Then in large samples we have:

(
λ/2− C/2∥gn(θ̂n)∥Wn

)−1 γ2c2 + 2γ
c23n
c1n

1− (1− γ)2
Qn(θ̂n) ≤ R2

n/2,

with increasing probability. For k large enough:

(1− γ)2(k)
(
λ/2− C/2∥gn(θ̂n)∥Wn

)−1

[Qn(θ0)−Qn(θ̂n)] ≤ R2
n/2,
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as well.2 Then, with increasing probability, for this choice of k we have:

∥θk − θ̂n∥ ≤ Rn,

apply Proposition 2 for another j ≥ 0 iterations to find:

∥θk+j − θ̂n∥ ≤ (1− γ̃)jRn,

where γ̃ is the convergence rate in Proposition 2 which need not the same as the

global rate derived above. This concludes the proof.

B.1.3 Proofs for Section 2.2.2

Proof of Proposition 3 (Gauss-Newton): Following the proof of Proposition 2:

∥θk+1 − θ̂n∥/∥θk − θ̂n∥

≤ 1− γ + γ

[
σ−1

√
λW/λWL∥θk − θ̂n∥+ σ−2(

√
λW/λW )L∥gn(θ̂n)∥Wn

] (B.1.1”)

Take γ̃ ∈ (0, γ), and R̃n such that:

R̃n =
γ − γ̃

γ

[
L−1σ

√
λW/λW

]
− (σ−1/

√
λW )∥gn(θ̂n)∥Wn .

We have

plimn→∞R̃n = R̃ =
γ − γ̃

γ
[L−1σ

√
λW/λW ]− (σ−1/

√
λW )φ > 0

⇔ φ < [1− γ̃/γ]
σ2λW

L
√
λW

2Let d0n = [λ/2− C/2∥gn(θ̂n)∥Wn ]
−1[Qn(θ0)−Qn(θ̂n)], pick k ≥ 2 logRn−log 2−log d0n

2 log(1−γ) .
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Under the stated Assumptions, for any φ ≥ 0 such that φ <
σ2λW

L
√

λW

, there exists

γ̃ ∈ (0, γ), sufficiently small such that the above strict inequality holds. Then,

R̃n ≥ (1 − ε)R̃ > 0 with probability approaching 1 for any ε ∈ (0, 1). Let Rn =

min(R̃n, RG), take ∥θ0 − θ̂n∥ ≤ Rn, by recursion:

∥θk+1 − θ̂n∥ ≤ (1− γ̃)∥θk − θ̂n∥ ≤ · · · ≤ (1− γ̃)k+1∥θ0 − θ̂n∥,

with probability approaching 1, for all k ≥ 0. This is the desired result.

Proof of Theorem 4: The layout of the proof closely follows that of Theorem 3.

Recall inequality (B.1.4):

(
λ− C∥gn(θ̂n)∥Wn

)
∥θ − θ̂n∥2 ≤ 2[Qn(θ)−Qn(θ̂n)] ≤

(
λ+ C∥gn(θ̂n)∥Wn

)
∥θ − θ̂n∥2,

where 0 < λ = minθ∈Θ λmin[Gn(θ)
′WnGn(θ)] ≤ λ = maxθ∈Θ λmax[Gn(θ)

′WnGn(θ)] <

∞, and C := 2
√
λmax(Wn)L ≥ 0 are finite. Condition (2.5’) implies 0 < λ−Cφ since

λ ≥ σ2λW when Assumption 2 (b) holds. Then, for any δ ∈ (0, 1), we have (λ −

C∥gn(θ̂n)∥Wn) ≥ (1 − δ)[λ − Cφ] > 0, with probability approaching 1 (wpa1). This

implies that the norm equivalence holds and is informative, with high probability,

in large samples. Now recall inequality (B.1.9):

Qn(θk+1)−Qn(θ̂n)

≤
(
1− γ

c1n
2

+ γ2c2

) [
Qn(θk)−Qn(θ̂n)

]
+

(
γ2c2 + 2γ

c23n
c1n

)
Qn(θ̂n),

where:

c1n = min
θk∈Θ

λmin[Gn(θk)
′W 1/2

n AkW
1/2
n Gn(θk)](λ/2 + C/2∥gn(θ̂n)∥Wn)

−1,
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c2 = LQ max
θ∈Θ

σ2
max[PkGn(θ)

′W 1/2
n ],

c3n = 2max
θ∈Θ

σmax[AkW
1/2
n Gn(θ)][λ/2− C/2∥gn(θ̂n)∥Wn ]

−1/2,

LQ is the Lipschitz constant of ∂θQn and Ak = W
1/2
n Gn(θk)PkGn(θk)

′W
1/2
n is an

idempotent matrix for GN. Together, Assumption 2 (b) and (2.5’) imply the fol-

lowing upper and lower bounds holds wpa1:

0 < c1 :=
2

3
ρ2([σ/σ]2κ−1

W )2 ≤ c1n ≤ 2[σ/σ]2κW := c1 <∞,

where σ ≥ σ is such that σmax[Gn(θ)] ≤ σ for all θ ∈ Θ and κW = λW/λW . The

upper bound relies on σmax(Ak) = 1 so the numerator is less than σ2λW , while for

the denominator ∥gn(θ̂n)∥Wn ≥ 0 and λ ≥ σ2λW . For the lower bound, Assumption

2 (b) implies the numerator is greater than infθk∈Θ σmin[Gn(θ)
′WnGn(θk)]

2λmin(Pk) ≥

[σ2λW ]2[σ2λW ]−1. For the denominator of the lower bound, notice that 0 ≤ φ < λ/C

implies C∥gn(θ̂n)∥Wn ≤ 2Cφ ≤ 2λ ≤ 2λ, wpa 1, which – with a bound on λ – yields

the resulting bound c1. Also, wpa1:

0 ≤ c3n ≤ c3[λ/2− C/2∥gn(θ̂n)∥Wn ]
−1/2.

where c3 = 2σλ
1/2

W since σmax(Ak) = 1 for GN. Combine these bounds to find that,

wpa1 and uniformly in θk we have:3

Qn(θk+1)−Qn(θ̂n)

≤
(
1− γ

c1
2
+ γ2c2

) [
Qn(θk)−Qn(θ̂n)

]
+

(
γ2c2 + 2γ

c23n
c1n

)
Qn(θ̂n),

3The inequality is uniform in θk because the bound involves the same event on ∥gn(θ̂n)∥Wn for
all θk.
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which does not depend on φ. For γ ∈ (0, 1) small enough, pick γ ∈ (0, 1) such that

(1− γ
c1
2
+ γ2c2) = (1− γ)2 and

Cn =
γ2c2 + 2γc23n/c1n

[1− (1− γ)2][λ/2− C/2∥gn(θ̂n)∥Wn ]
= Op(1),

as in Theorem 3. Then we have:

Qn(θk+1)−Qn(θ̂n)

≤ (1− γ)2(k+1)
[
Qn(θ0)−Qn(θ̂n)

]
+ Cn[λ/2− C/2∥gn(θ̂n)∥Wn ]Qn(θ̂n),

iterate on this inequality and apply the norm equivalence to find that (2.4’) holds

wpa1.

As in Theorem 3, we further need to invoke the local convergence results to

show that θk → θ̂n as k increases. For that, we need to show that for some δ ∈

(0, 1), sufficient small, we have CnQn(θ̂n) ≤ (1 − δ)R2
n, defined in Proposition 3.

Note that Assumption 2 implies, without loss of generality, that RG > R̃n = Rn in

Proposition 3.

If φ = 0, we have Qn(θ̂n) = op(1) and Cn = Op(1) which together yield

CnQn(θ̂n) = op(1) ≤ (1 − δ)R̃2
n wpa1, as in Theorem 3. Now suppose φ > 0,

then we have, for any δ ∈ (0, 1), that Qn(θ̂n) ≤ [1 − δ]−1φ2 wpa1. We also have:

{λ/2− C/2∥gn(θ̂n)∥Wn}−1 ≤ {(1 − δ)∆}−1 wpa1, where ∆ = 1/2[σ2λW − 2Lλ
1/2

W φ].

Combine these with the bounds for c1n, c3n above to find that wpa1:

CnQn(θ̂n) ≤
γ2c2 + 2γc23/[(1− δ)∆c1]

[γc1 − γ2c2](1− δ)2∆
φ2 ≤ ∆γ2c2 + 2γc23/c1

[γc1 − γ2c2](1− δ)3∆2
φ2,
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using (1−γ)2 = (1−γc1/2+γ2c2). If inequality (2.6) holds strictly, then for δ ∈ (0, 1)

small enough we also have:

∆γ2c2 + 2γc23/c1
[γc1/2− γ2c2]∆2

φ2 ≤ (1− δ)5

(
(1− ε)

σ

L
√
κW

− φ

σ
√
λW

)2

. (B.1.10)

Next, note that wpa1: (1 − δ)2[(1 − ε) σ
L
√
κW

− φ

σ
√

λW

]2 ≤ (1 − δ)[(1 − ε) σ
L
√
κW

−
∥gn(θ̂n)∥Wn

σ
√

λW

]2 = (1 − δ)R̃2
n from Proposition 3. Set γ̃ such that ε = γ̃/γ (or smaller).

Putting these inequalities together implies that wpa1:

Cn∥gn(θ̂n)∥2Wn
≤ (1− δ)R̃2

n,

for the same small enough δ ∈ (0, 1). Now take k ≥ kn given in the Theorem, wpa1

∥θk − θ̂n∥ ≤ R̃n when k ≥ kn because kn was chosen such that the leading term is

less than δR̃2
n to be added to (1− δ)R̃2

n above. Since the conditions for Proposition

3 hold, we have for k = kn + j, j ≥ 0: ∥θk − θ̂n∥ ≤ (1− γ̃)jR̃n, as desired.

Theorem B.1.1. Suppose Assumptions 1, 2, 3 hold and Qn(θ̂n) = 0. Then, for γ small

enough, there exists γ ∈ (0, 1) and 0 < λ ≤ λ < +∞ such that: ∥θk+1 − θ̂n∥ ≤

(1− γ)k+1

√
λ/λ∥θ0 − θ̂n∥, for any starting value θ0 ∈ Θ, with probability approaching 1.

Proof of Theorem B.1.1: Since Assumptions B.15 and B.16 hold (using Lemmas

B.12, B.14), Proposition 4 (1)-(2) hold with probability approaching with the same

choice of strictly positive constants C1, C2, C3. Denote by LQ the Lipschitz constant

of ∂θQn. The mean value value theorem implies that for some θ̃k between θk and

θk+1:

Qn(θk+1) = Qn(θk)− γ∂θQn(θk)Pk∂θQn(θk)− γ{∂θQn(θ̃k)− ∂θQn(θk)}Pk∂θQn(θk)
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≤ Qn(θk)− γλP∥∂θQn(θk)∥2 + γ2LQλ
2

P∥∂θQn(θk)∥2

≤ Qn(θk) + C1{−γλP + γ2λ
2

PLQ}(Qn(θk)−Qn(θ̂n)).

Substract Qn(θ̂n) on both sides to find:

Qn(θk+1)−Qn(θ̂n) = {1− γC1λP + γ2C1λ
2

PLQ}(Qn(θk)−Qn(θ̂n)),

where 0 < 1 − γC1λP + γ2C1λ
2

PLQ < 1 if 0 < γ < λP/[Lλ
2

P ]. Set (1 − γ)2 =

1− γC1λP + γ2C1λ
2

PLQ and iterate over k = 0, . . . to find:

∥θk+1 − θ̂n∥ ≤ (1− γ)k+1C2/C3∥θ0 − θ̂n∥,

which is the desired result.

B.2 PROOFS AND ADDITIONAL RESULTS FOR SECTION 2.3

B.2.1 Additional Results for Over-Identified Models

Proposition B.216. (Sufficient Conditions: Over-Identified) Consider the following three

conditions: (a) σmin[G(θ)
′WG(θ1, θ2)] > σ > 0, for all θ, θ1, θ2 ∈ Θ, (b) for all θ ∈

Θ, G(θ) = US(θ)V for U, V full rank, S(θ) symmetric with 0 < λS < λmin[S(θ)] <

λmax[S(θ)] < λS <∞, and U ′WU invertible.

The following holds: (1) (b) ⇒ (a) ⇒ Assumption 2 (a), (2) (a) implies G(θ1)′Wg(·) is

one-to-one, for any θ1 ∈ Θ.

Proposition B.217. (Reparameterization: Over-Identified) Take h as in Proposition 10. If

Assumption 2 (a) holds for g and σ > λW [C1σhσ
2 +C2Lσ

2
hσ]/σ

2
h, then Assumption 2 (a)

holds for g ◦ h. In particular, if h = Au + b is affine with A invertible then C1 = C2 = 0

and Assumption 2 (a) holds for g ◦ h.
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B.2.2 Proofs

Proof of Proposition 4: We first prove (2). For any θ ∈ Θ, g(θ) = g(θ) −

g(θ†) = G(θ)(θ − θ†), for correctly specified models. This implies that Q(θ) =

1/2(θ − θ†)′G(θ)′WG(θ)(θ − θ†). Assumption 1 (iii) implies σmax[G(θ)] ≤

maxθ∈Θ σmax[G(θ)] ≤ σ < +∞. Assumption 2 (b) implies σλ
1/2

W ∥W 1/2G(θ)(θ−θ†)∥ ≥

ρσ∥θ − θ†∥ and ∥W 1/2G(θ)(θ − θ†)∥ =
√
2[Q(θ)−Q(θ†)]. Putting these together

yields:

1/2
ρ2σ2

σ2λW
∥θ − θ†∥2 ≤ Q(θ)−Q(θ†) ≤ 1/2σ2λW∥θ − θ†∥2.

Now, we prove (1). We have ∂θQ(θ) = G(θ)′Wg(θ) = G(θ)′WG(θ)(θ−θ†). Assump-

tion 2 (b) implies:

∥∂θQ(θ)∥2 ≥ ρ2σ2∥θ − θ†∥2 ≥ ρ2σ2

1/2σ2λW
[Q(θ)−Q(θ†)],

using (2). This is the desired result.

Proof of Proposition 5: For correctly specified models, ∂θ′Q(θ) = G(θ)′WG(θ)(θ−

θ†). 1) If the PL inequality holds, the quadratic lower bound implies

∥G(θ)′WG(θ)(θ − θ†)∥2 ≥ µC2∥θ − θ†∥2, i.e. Assumption 2 (b) holds.

2) By definition, Q is quasar-convex if, and only if, there are λ ≥ 1 and µ ≥ 0 such

that:

∂θQ(θ)(θ − θ†) ≥ 1

λ
{Q(θ)−Q(θ†)}+ µ

2λ
∥θ − θ†∥2,

where ∂θQ(θ)(θ − θ†) = (θ − θ†)′G(θ)′WG(θ)(θ − θ†). Since Q(θ) − Q(θ†) ≥ 0 we

have:

(θ − θ†)′G(θ)′WG(θ)(θ − θ†) ≥ µ

2λ
∥θ − θ†∥2.
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Now apply the Cauchy-Schwarz inequality to find:

∥θ − θ†∥∥G(θ)′WG(θ)(θ − θ†)∥ ≥ (θ − θ†)′G(θ)′WG(θ)(θ − θ†) ≥ µ

2λ
∥θ − θ†∥2,

which implies Assumption 2 (b).

Proof of Proposition 6: 1) Strong monotonicity of Ag implies (θ1 −

θ2)
′AG(θ1, θ2)(θ1 − θ2) ≥ µ∥θ1 − θ2∥2 since g(θ1) − g(θ2) = G(θ1, θ2)(θ1 − θ2). For

any unit vector v, take θ2 = θ1 + εv and let ε→ 0 to find v′AG(θ1)v = 1
2
v′[AG(θ1) +

G(θ1)
′A′]v ≥ µ so that G(θ1) has full rank and AG(θ1)+G(θ1)′A′ is positive definite.

We have σmin[G(θ)] ≥ µσmin(A)
−1 := σ > 0. Pick θ2 = θ†, use the Cauchy-Schwarz

inequality to find ∥A′(θ − θ†)∥∥G(θ, θ†)(θ − θ†)∥ ≥ (θ − θ†)′AG(θ, θ†)(θ − θ†) ≥

µ∥θ−θ†∥2. BecauseG(θ)′W is invertible, so we can write ∥G(θ)′WG(θ, θ†)(θ−θ†)∥ =

∥G(θ)′WA−1AG(θ, θ†)(θ−θ†)∥ ≥ σλW∥AG(θ, θ†)(θ−θ†)∥ ≥ µλWσ∥θ−θ†∥2 Assump-

tion 2 (b) also holds for an appropriate 0 < ρ ≤ µλW .

2) Strong injectivity of g implies ∥G(θ1, θ2)(θ1 − θ2)∥ ≥ µ∥θ1 − θ2∥, for any pair

θ1, θ2. Using the same arguments as above: G(θ) has full rank for all θ and

∥G(θ)′WG(θ, θ†)(θ − θ†)∥ ≥ σλWµ∥θ − θ†∥.

Proof of Proposition 7. Assumption 1 (ii)-(vi) implies Assumption 2 (a) holds

locally (Lemma B.13). Hence, for ∥θ − θ†∥ ≤ r, we have ∥G(θ)′WG(θ − θ†)∥ ≥

ρσ∥θ − θ†∥. Condition (N) implies that for R ≥ ∥θ − θ†∥ ≥ r we have:

inf
θ,R≥∥θ−θ†∥≥r

∥∂θQ(θ)∥ ≥ δ(r, R) ≥ δ(r, R)

R
∥θ − θ†∥,

by continuity, compactness and the Weierstrass Theorem. We can pick ρ < δ(r,R)
Rσ

.
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Proof of Proposition 8: For any θ ∈ Θ, we have:

Q(θ)−Q(θ†) =
1

2

(
g(θ)′Wg(θ)− g(θ†)′Wg(θ†)

)
=

1

2

(
g(θ) + g(θ†)

)′
W
(
g(θ)− g(θ†)

)
=

1

2

(
g(θ) + g(θ†)

)′
WG(θ)(θ − θ†)

=
1

2
(θ − θ†)′G(θ)′WG(θ)(θ − θ†)− g(θ†)′WG(θ)(θ − θ†),

the first term in the last display matches the one in the proof of Proposition 4. Note

that g(θ†)′WG(θ†) = 0 and ∥G(θ†) − G(θ)∥ ≤ L∥θ − θ†∥, together these allow to

bound the second term:

∥g(θ†)′WG(θ)(θ − θ†)∥ = ∥g(θ†)′W [G(θ)−G(θ†)](θ − θ†)∥ ≤ λ
1/2

W L
√
φ∥θ − θ†∥2.

Let C2 = 1/2 ρ2σ2

σ2λW
and C3 = 1/2σ2λW , as in the proof of Proposition 4. Take C4 =

λ
1/2

W L, this yields (2):

(C2 − C4
√
φ)∥θ − θ†∥2 ≤ Q(θ)−Q(θ†) ≤ (C3 + C4

√
φ)∥θ − θ†∥2.

For (1), we have ∂θQ(θ) = G(θ)′Wg(θ) and G(θ†)′Wg(θ†) = 0, so that:

∂θQ(θ) = G(θ)′WG(θ)(θ − θ†) + {G(θ)−G(θ†)}′Wg(θ†).

Apply the reverse triangular inequality to find:

∥∂θQ(θ)∥ ≥ ρσ∥θ − θ†∥ −
√
φλWL∥θ − θ†∥

=

(
ρσ −

√
φλWL

)
∥θ − θ†∥,
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where L is the Lipschitz constant of G. Finally, (1’) can be derived from (1) and (2)

assuming (ρσ −
√
φλWL) > 0.

Proof of Proposition 9: We first prove (1). (a) ⇒ Assumption 2 (a) is immediate.

Under (c), G(θ) = ∂2θ,θ′F (θ) is symmetric and strictly positive definite so (b) holds.

Suppose (b) holds, then G(θ1, θ2) = U{
∫ 1

0
S(ωθ1+(1−ω)θ2)dω}V where

∫ 1

0
S(ωθ1+

(1 − ω)θ2)dω is symmetric. Concavity of the smallest positive eigenvalue on the

set of positive definite matrices, and Jensen’s inequality imply: λmin[
∫ 1

0
S(ωθ1 +

(1− ω)θ2)dω] ≥
∫ 1

0
λmin[S(ωθ1 + (1 − ω)θ2)]dω ≥ minθ∈Θ λmin[S(θ)] > 0, by positive

definiteness and continuity of S(·). Finally,

σmin[G(θ1, θ2)] ≥ σmin(U)σmin(V )min
θ∈Θ

λmin[S(θ)] > λSσUσV > 0,

taking σUσV to be smallest singular values of U, V . Hence (a) holds.

For (2), note that g(θ1) − g(θ2) = G(θ1, θ2)(θ1 − θ2), using Lemma B.11. With

condition (a), we have g(θ1)− g(θ2) = 0 ⇔ θ1 = θ2, i.e. g(·) is one-to-one.

For (3), g(·) is one-to-one, take ϕ(·) = g−1(·), one-to-one, and ψ = Id− θ†, we get

h(θ) = θ − θ† linear for which strong convexity is immediate.

Proof of Proposition 10: Under Assumption 2 (a), G has full rank for all θ ∈ Θ.

Take u ∈ U , let θ = h(u), the chain rule implies that ∂ug ◦ h(u) = ∂θg ◦ h(u)∂uh(u)

has full rank for all u ∈ U . Then, we have:

1∫
0

G ◦ h(ωu+ (1− ω)u)∂uh(ωu+ (1− ω)u†)dω

=

1∫
0

G(ωθ + (1− ω)θ†)dω∂uh(u
†)
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+

1∫
0

G(ωθ + (1− ω)θ†)[∂uh(ωu+ (1− ω)u†)− ∂uh(u
†)]dω

+

1∫
0

[G ◦ h(ωu+ (1− ω)u)−G(ωθ + (1− ω)θ†)]∂uh(ωu+ (1− ω)u†)dω,

using Weyl’s inequality and a minoration of the singular value for a matrix prod-

uct, we get:

σmin[

1∫
0

∂uh(ωu+ (1− ω)u†)G ◦ h(ωu+ (1− ω)u)dω] ≥ σhσ − C1σ − C2Lσh,

which is strictly positive under the stated condition. After the change of variable,

the Assumption 2 (a) holds if:

∂uh(u)
′G(g(u))′W

{ 1∫
0

∂uh(ωu+ (1− ω)u†)G ◦ h(ωu+ (1− ω)u)dω
}
,

has singular values bounded below by a strictly positive term which holds for

C1, C2 bounded as in the Proposition statement. In particular, when h is affine,

C1 = C2 = 0 and 0 < σh = σmin[A] ≤ σmax[A] ≤ σh < ∞, so that the condition is

automatically satisfied.

Proof of Proposition B.216: First, we prove (1). (a) ⇒ Assumption 2 (a) is

immediate. Suppose (b) holds, take any θ, θ1, θ2 ∈ Θ, then G(θ)′WG(θ1, θ2) =

V ′S(θ)U ′WU
∫ 1

0
{S(ωθ1 + (1− ω)θ2)}dωV . By assumption, V ′S(θ) and U ′WU have

full rank. As in the proof of Proposition 9,
∫ 1

0
{S(ωθ1 + (1 − ω)θ2)}dω has full rank

for any θ1, θ2, and V is invertible. Hence, S(θ)U ′WU
∫ 1

0
{S(ωθ1 + (1− ω)θ2)}dωV is

invertible, U has full rank so that G(θ)′WG(θ1, θ2) has full rank for all θ, θ1, θ2.
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For part (2), take any θ1, θ2, θ3. Suppose G(θ1)′Wg(θ2) = G(θ1)
′Wg(θ3), apply

Lemma B.11 to find G(θ1)
′WG(θ2, θ3)(θ2 − θ3) = 0 ⇒ θ2 = θ3 under condition

(a).

Proof of Proposition B.217: We’ll proceed similarly to the proof of Proposition

10:

1∫
0

∂′uh(ωu+ (1− ω)u†)G ◦ h(ωu+ (1− ω)u†)′dωWG ◦ h(u)∂uh(u)

= ∂′uh(u
†)

1∫
0

G(ωθ + (1− ω)θ†)′dωWG(θ)∂uh(u)

+

1∫
0

[∂uh(ωu+ (1− ω)u†)− ∂uh(u
†)]′G(ωθ + (1− ω)θ†)′dωWG(θ)∂uh(u)

+

1∫
0

∂′uh(ωu+ (1− ω)u†)[G ◦ h(ωu+ (1− ω)u†)

−G(ωθ + (1− ω)θ†)]′dωWG(θ)∂uh(u).

As before, we get: σmin[
∫ 1

0
∂′uh(ωu + (1 − ω)u†)G ◦ h(ωu + (1 − ω)u†)′dωWG ◦

h(u)∂uh(u)] ≥ σσ2
h − C1σhσ

2λW − C2Lσ
2
hσλW which is positive under the stated

condition. As before, for h affine we have C1 = C2 = 0 so that the condition holds

for A finite and invertible.
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B.3 COMMON METHODS AND THEIR PROPERTIES

B.3.1 A survey of empirical practice

Survey methodology: The survey covers empirical papers published in the

American Economic Review (AER) between 2016 and 2018. The focus on this

specific outlet is driven by the mandatory data and code policy enacted in 2005.

Indeed, since a number of papers provide little or no detail in the paper on the

methodology used to compute estimates numerically, it is important to read the

replication codes to determine what was implemented. The search function in

JSTOR was used to find the papers matching the survey criteria. The database

did not include more recent publications at the time of the survey.4 Table B.3.1

was constructed by reading through the main text, supplemental material, and all

available replication codes of the selected papers.

Survey results: Table B.3.1 provides an overview of the quantitative results of the

survey. Additional details on the algorithms in the table are given below. There are

23 papers in total, a little over 7 papers per year. Excluding the estimation with 147

parameters, the average estimation has around 10 coefficients, and the median is

6. 3 papers used more than one starting value, and the remaining 20 papers either

used the solver default or typed in a specific value in the replication code. There is

generally no information provided on the origin of these specific starting values.

Of the papers using multiple starting values, one did not provide replication codes,

and the other two used 12 and 50 starting points. Some of the estimations are very

4The search function in JSTOR allows to search for keywords within the title, abstract, main
text, and supplemental material of a paper. Further screening ensures that each paper in the search
results actually implements at least one of the estimations considered. The search criteria include
keywords: “Method of Moments," “Indirect Inference," “Method of Simulated Moments," “Mini-
mum Distance," and “MM."
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Table B.3.1: American Economic Review 2016-2018: GMM and re-
lated empirical estimations

Method # Papers # Parameters (p) Data available
Nelder-Mead - one starting value 7 2,6 (×2),11,13 (×2),147 3
Simulated Annealing + Nelder-Mead 2 4,13 1
Nelder-Mead - multiple starting values 2 ?,6 1‡

Pattern Search 2 6,147 1†

Genetic Algorithm 2 9,14 1
Simulated Annealing 2 4,13 2†

MCMC 1 15 1
Grid Search 1 5 1
No description 3 - -
Stata/Mata default 4 3,6 (×2),38 3⋆

Legend: # Parameters correspond to the size of the largest specification. Data
avail. reports if the dataset is included with the replication files. Estimations
surveyed include: Generalized Method of Moments (GMM), Minimum Distance
(MD), Simulated Method of Moments (SMM), and Indirect Inference. ?: infor-
mation not available due to the lack of replication codes. ⋆: one of the 3 papers
reported to include data requires to download the PSID dataset separately. †: two
papers in total also rely separately on Nelder-Mead, so they are also reported un-
der Nelder-Mead. ‡: one paper provides data without codes.

time-consuming. For instance, Lise & Robin (2017) use MCMC for estimation (but

not inference) and report that each evaluation of the moments takes 45s. In total,

their estimation takes more than a week to run in a 96-core cluster environment.

As mentioned in the introduction, although convex optimizers such as

(stochastic) gradient-descent and quasi-Newton methods are commonly used to

solve large scale convex minimization problems, they are virtually absent from

the survey. Overall, 11 papers rely on the Nelder-Mead algorithm, alone or in

combination with another method, making it the most popular optimizer in this

survey. Pattern search, used in 2 papers, belongs to the same family of algorithms

as Nelder-Mead. The following provides a brief overview of the properties of the

main Algorithms found used in Table B.3.1.
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B.3.2 A brief summary of the Algorithms’ properties

The following briefly discussed the properties of four algorithms from Table B.3.1:

Nelder-Mead, Grid Search, Multi-Start, and Simulated Annealing. Further discus-

sion, descriptions, and references can be found in Appendix B.6.

Nelder-Mead (NM) is the most popular method in the survey, it can be used

even if Qn is discontinuous. Its convergence properties, which measure its ability

to find valid estimates, are somewhat limited however. For some smooth convex

problems, it can be shown to converge to values that are neither locally nor globally

optimal. The grid-search converges to the solution under weak conditions, unlike

NM. It is very slow, however, and often not practical when estimating three or

more coefficients. Simulated annealing (SA) is not deterministic. Still it converges,

in probability, under weak conditions to the solution. Albeit, the convergence is

predicted to be slower than grid search. A common approach to improve the con-

vergence of a given algorithm is to combine it with multiple starting values. The

required number of starting values depends on Qn and the choice of algorithm.

Andrews (1997) provides an asymptotically valid stopping rule for correctly spec-

ified GMM models.

When Qn is strongly convex, several gradient-based methods discussed below

are rapidly, globally convergent and do not suffer from a curse of dimensionality.

This implies that it is possible to estimate a large number of parameters in a rea-

sonable amount of time. Similar convergence properties are derived in this paper,

under rank conditions instead of convexity.
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B.3.3 Revisting some empirical results

In the survey, 11 papers provide replication files with the codes and data neces-

sary to replicate the results. Excluding those requiring Stata, Fortran, Eviews, and

C/C++ to run, 3 papers remain: Gill & Prowse (2012), Sieg & Yoon (2017) and

Kelly et al. (2016). The first two involve a Simulated Method of Moments (SMM)

estimation with discrete outcomes, which are non-smooth moments and fall out-

side the framework of this paper. Kelly et al. (2016) use Simulated Annealing for

estimation. The rank condition used in this paper is not satisfied for their esti-

mation. As shown below, when the rank condition holds: any local optimum

is a valid estimator and the model is globally identified. Here, there are values

θ̃n = (9.67,−0.19, 0.47) with a lower objective Qn(θ̃n) = 1.0419 than in the original

results θ̂n = (3.20,−0.34, 0.54) and Qn(θ̂n) = 1.0469.5 The parameters θ = (ω, ϑ, δ)

are coefficients in a Merton Jump model (see Kelly et al., 2016, SecB).6 Figure B.5.5,

Appendix B.5.4, illustrates for a one-dimensional subproblem how the estimation

is non-convex and the rank conditions fail. The figure also illustrates that their

estimates are not globally optimal.

B.4 R CODE FOR THE MA(1) EXAMPLE

library(stats) # fit an AR(p) model

library(pracma) # compute jacobian

n = 200 # sample size n

theta = -1/2 # MA(1) coefficient

5Another value, within their specified bounds, is θ̃n = (50.31,−0.10, 0.48) with a lower objective
value Qn(θ̃n) = 1.0367.

6The authors do not report standard errors, but it seems that the objective values are close
enough and the parameters far enough that identification of the Merton Jump parameters could
be a concern.
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set.seed(123) # set the seed for random numbers

e = rnorm(n+1) # draw innovations

y = e[2:(n+1)] - theta*e[1:n] # generate MA(1) data

p = 12 # number of lags for the AR(p) models

beta <- function(theta) {

# computes the p-limit of the OLS estimates

# V = covariance matrix of (y_{t-1},...,y_{t-p})

V = diag(p+1)*(1+theta^2) # variances on the diagonal

diag(V[,-1]) = -theta # autocovariance

V = t(V) # transpose

diag(V[,-1]) = -theta # autocovariance

return(

solve( V[2:(p+1),2:(p+1)], V[1,2:(p+1)] )

# p-limit = inv(V)*( vector of autocovariances )

)

}

# Fit the AR(p) auxiliary model:

ols_p = c(ar.ols( y, aic = FALSE, order.max = p, demean = FALSE,

intercept = FALSE )$ar)

moments <- function(theta) {

# computes the sample moments gn

return( ols_p - beta(theta) ) # gn = psi_n - psi(theta)

}

objective <- function(theta,disp = FALSE) {

# compute the sample objective Qn

if (disp == TRUE) {
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print(round(theta,3)) # print to tack R’s optimization paths

}

mm = moments(theta) # compute sample moments gn

return( t(mm)%*%mm ) # compute Qn = gn’*gn (W = Id)

}

dQ <- function(theta,disp=FALSE) {

# compute the derivative of Qn

# gradient of Qn = -2*d psi(theta)/ d theta’ * gn(theta)

return(-2*t(jacobian(beta,theta))%*%moments(theta))

}

# L-BFGS-B: with bound constraints

o1 = optim(0.95,objective,gr=dQ,method="L-BFGS-B",lower=c(-1),upper=c(1)

,disp=TRUE)

# BFGS: without bound constraints

o2 = optim(0.95,objective,gr=dQ,method="BFGS",disp=TRUE)

# *********************************

# Gauss-Newton

# *********************************

gamma = 0.1 # learning rate

coefsGN = rep(0,150) # 150 iterations in total

coefsGN[1] = 0.95 # starting value: theta = 0.95

for (b in 2:150) { # main loop for Gauss-Newton

Gn = -jacobian(beta,coefsGN[b-1]) # 1. compute Jacobian

mom = moments(coefsGN[b-1]) # 2. compute moments

coefsGN[b] = coefsGN[b-1] - gamma*solve(t(Gn)%*%Gn,t(Gn)%*%mom) # 3.

update

} # repeat for each b
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# Put the results into a table:

results = matrix(NA,2,3)

colnames(results) = c(’L-BFGS-B’,’BFGS’,’GN’)

results[1,] = c(o1$par,o2$par,coefsGN[150])

results[2,] = sapply(results[1,],objective)

rownames(results) = c(’theta’,’Qn(theta)’)

print(results,digits=3)

# Output should look like this:

# L-BFGS-B BFGS GN

# theta -1.0 -6.979 -0.626

# Qn(theta) 1.7 0.397 0.101
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B.5 ADDITIONAL SIMULATION, EMPIRICAL RESULTS

B.5.1 Estimating an MA(1) model

The following reports GN results with γ ∈ {0.1, 0.2, 0.4, 0.6, 0.8, 1}, p = 1 and p =

12, equal and optimal weighting (p = 12).

Figure B.5.1: GN iterations: different learning rates

Legend: simulated sample of size n = 200, θ† = −1/2, gn(θ) = β̂n − β(θ). Grey
horizontal line: θ̂n = −0.339. Just Identified (p = 1).
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Figure B.5.2: Non-convexity and the rank condition (p = 12, equal
weighting Wn = Id)

Legend: simulated sample of size n = 200, θ† = −1/2, gn(θ) = β̂n−β(θ), Wn = Id.
The GMM objective (panel a) is non-convex but the sample moments (panel b)
satisfy the rank condition: Gn(θ1)

′Gn(θ2) is full rank (non-zero) for all (θ1, θ2) ∈
(−1, 1)× (−1, 1).
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Figure B.5.3: Non-convexity and the rank condition (p = 12, optimal
weighting Wn = V −1

n )

Legend: simulated sample of size n = 200, θ† = −1/2, gn(θ) = β̂n − β(θ), Wn =

V −1
n with Vn = nv̂ar(β̂n). The GMM objective (panel a) is non-convex but the

sample moments (panel b) does not satisfy the rank condition: Gn(θ1)
′V −1

n Gn(θ2)
is not full rank (non-zero) for all (θ1, θ2) ∈ (−1, 1)× (−1, 1).
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Figure B.5.4: GN iterations: equal and optimal weighting, different
learning rates

Legend: simulated sample of size n = 200, θ† = −1/2, gn(θ) = β̂n−β(θ), Wn = Id
(equal weighting, top panel), or Wn = V −1

n (optimal weighting, bottom panel),
with Vn = nv̂ar(β̂n). Grey horizontal line: θ̂n = −0.626 (equal weighting), θ̂n =
−0.466 (optimal weighting).

B.5.2 Demand for Cereal

B.5.3 Impulse Response Matching

The following tables report results for GN using a range of tuning parameters γ.

Since the rank condition does not hold towards the lower bound for η, ν, GN alone

can crash and/or fail to converge. Following Forneron (2023), we can introduce a

global step:

θk+1 = θk − γPkGn(θk)
′Wngn(θk) (2.1)

if ∥gn(θk+1)∥Wn < ∥gn(θk+1)∥Wn , set θk+1 = θk+1



192

Table B.5.1: Demand for Cereal: GN with different learning rates

STDEV INCOME objs # of
const. price sugar mushy const. price sugar mushy crashes

TRUE
est 0.28 2.03 -0.01 -0.08 3.58 0.47 -0.17 0.69 33.84 -se 0.11 0.76 0.01 0.15 0.56 3.06 0.02 0.26 -

avg 0.28 2.03 -0.01 -0.08 3.58 0.47 -0.17 0.69 33.84
γ = 0.1 std 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0

avg 0.28 2.03 -0.01 -0.08 3.58 0.47 -0.17 0.69 33.84
γ = 0.2 std 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0

avg 0.28 2.03 -0.01 -0.08 3.58 0.47 -0.17 0.69 33.84
γ = 0.4 std 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0

avg 0.28 2.03 -0.01 -0.08 3.58 0.47 -0.17 0.69 33.84
γ = 0.6 std 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0

avg 0.28 2.03 -0.01 -0.08 3.58 0.47 -0.17 0.69 33.84
γ = 0.8 std 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0

avg 0.28 2.03 -0.01 -0.08 3.58 0.47 -0.17 0.69 33.84
γ = 1 std 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0

Legend: Comparison for 50 starting values in [−10, 10]× · · · × [−10, 10]. Avg, Std:
sample average and standard deviation of optimizer outputs. TRUE: full sample
estimate (est) and standard errors (se). Objs: avg and std of minimized objective
value. # of crashes: optimization terminated because the objective function re-
turned an error. GN run with γ ∈ {0.1, 0.2, 0.4, 0.6, 0.8, 1} for k = 150 iterations for
all starting values.

where the sequence (θk)k≥0 is predetermined and dense in Θ. The results rely on

the Sobol sequence, independently randomized for each of the 50 starting values.7

Results are reported with and without the global step. Also, the former imple-

ments error-handling (try-catch).

7We take (sk)k≥0 in [0, 1]p, p ≥ 1 is the number of parameters, draw one vector (u1, . . . , up) ∼
U[0,1]p , for each starting value, and compute s̃k = (sk + u) modulo 1, then map s̃k to the bounds
for θ = (θ1, . . . , θp). The randomization is used to create independent variation in the global step
between starting values to emphasize that convergence does not rely on a specific value in the
sequence (θk)k≥0; this is called a random shift (see Lemieux, 2009, Ch6.2.1).
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Table B.5.2: Without reparameterization : GN with different learning
rates

η ν ρs σs objs # of crashes
TRUE est 0.30 0.29 0.39 0.17 4.65 -

GN WITHOUT GLOBAL STEP

avg 0.30 0.29 0.39 0.17 4.65
γ = 0.1

std 0.00 0.00 0.00 0.00 0.00
2

avg 0.30 0.29 0.39 0.17 4.65
γ = 0.2

std 0.00 0.00 0.00 0.00 0.00
2

avg 0.30 0.29 0.39 0.17 4.65
γ = 0.4

std 0.00 0.00 0.00 0.00 0.00
4

avg 0.30 0.29 0.39 0.17 4.65
γ = 0.6

std 0.00 0.00 0.00 0.00 0.00
8

avg 0.30 0.29 0.39 0.17 4.65
γ = 0.8

std 0.00 0.00 0.00 0.00 0.00
12

avg 0.30 0.29 0.39 0.17 4.65
γ = 1

std 0.00 0.00 0.00 0.00 0.00
28

GN WITH GLOBAL STEP

avg 0.30 0.29 0.39 0.17 4.65
γ = 0.1

std 0.00 0.00 0.00 0.00 0.00
0

avg 0.30 0.29 0.39 0.17 4.65
γ = 0.2

std 0.00 0.00 0.00 0.00 0.00
0

avg 0.30 0.29 0.39 0.17 4.65
γ = 0.4

std 0.00 0.00 0.00 0.00 0.00
0

avg 0.30 0.29 0.39 0.17 4.65
γ = 0.6

std 0.00 0.00 0.00 0.00 0.00
0

avg 0.30 0.29 0.39 0.17 4.65
γ = 0.8

std 0.00 0.00 0.00 0.00 0.00
0

avg 0.30 0.29 0.39 0.17 4.65
γ = 1

std 0.00 0.00 0.00 0.00 0.00
0

lower bound 0.05 0.01 -0.95 0.01 - -
upper bound 0.99 0.90 0.95 12 - -

Legend: Comparison for 50 starting values. TRUE: full sample estimate (est). GN
WITH GLOBAL STEP: Gauss-Netwon augmented with a global sequence. Both are
run for k = 150 iterations in total, for all starting values. Objs: avg and std of min-
imized objective value. # of crashes: optimization terminated because objective
returned error. Lower/upper bound used for the reparameterization.
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Table B.5.3: With reparameterization : GN with different learning
rates

η ν ρs σs objs # of crashes
TRUE est 0.30 0.29 0.39 0.17 4.65 -

GN WITHOUT GLOBAL STEP

avg 0.30 0.29 0.39 0.17 4.65
γ = 0.1

std 0.00 0.00 0.00 0.00 0.00
5

avg 0.30 0.29 0.39 0.17 4.65
γ = 0.2

std 0.00 0.00 0.00 0.00 0.00
10

avg 0.30 0.29 0.39 0.17 4.65
γ = 0.4

std 0.00 0.00 0.00 0.00 0.00
20

avg 0.30 0.29 0.39 0.17 4.65
γ = 0.6

std 0.00 0.00 0.00 0.00 0.00
22

avg 0.30 0.29 0.39 0.17 4.65
γ = 0.8

std 0.00 0.00 0.00 0.00 0.00
25

avg 0.30 0.29 0.39 0.17 4.65
γ = 1

std 0.00 0.00 0.00 0.00 0.00
29

GN WITH GLOBAL STEP

avg 0.30 0.29 0.39 0.17 4.65
γ = 0.1

std 0.00 0.00 0.00 0.00 0.00
0

avg 0.30 0.29 0.39 0.17 4.65
γ = 0.2

std 0.00 0.00 0.00 0.00 0.00
0

avg 0.30 0.29 0.39 0.17 4.65
γ = 0.4

std 0.00 0.00 0.00 0.00 0.00
0

avg 0.30 0.29 0.39 0.17 4.65
γ = 0.6

std 0.00 0.00 0.00 0.00 0.00
0

avg 0.30 0.29 0.39 0.17 4.65
γ = 0.8

std 0.00 0.00 0.00 0.00 0.00
0

avg 0.30 0.29 0.39 0.17 4.65
γ = 1

std 0.00 0.00 0.00 0.00 0.00
0

lower bound 0.05 0.01 -0.95 0.01 - -
upper bound 0.99 0.90 0.95 12 - -

Legend: Comparison for 50 starting values. TRUE: full sample estimate (est). GN
WITH GLOBAL STEP: Gauss-Netwon augmented with a global sequence. Both are
run for k = 150 iterations in total, for all starting values. Objs: avg and std of min-
imized objective value. # of crashes: optimization terminated because objective
returned error. Lower/upper bound used for the reparameterization.
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B.5.4 Comparison of Rank Condition and Convexity

Non-convexity and failure of rank conditions in Kelly et al. (2016). The mo-

ments are computationally intensive to evaluate in Kelly et al. (2016), for each

value θ they use a numerical solver to compute option prices and then evalu-

ate the moments. The illustrate how convexity and the rank conditions fail in

this example, consider a one-dimensional sub-problem θ(ω) = ωθ̃n + (1 − ω)θ̂n

where θ̂n = (3.20,−0.34, 0.54) are the estimates reported in Kelly et al. (2016) and

θ̃n = (9.67,−0.19, 0.47) is a value for which Qn is strictly smaller. Figure B.5.5 is

similar to figure B.5.2, the moments were evaluated on a coarse grid and inter-

polated to reduce the computational burden. The top left panel shows the objec-

tive function which is non-convex. The red dot indicates the estimates reported

in Kelly et al. (2016). The Hessian can be positive, negative or zero depending on

the value ω (top right panel). However, here the rank condition also fails since the

scalar ∂ωgn(θ(ω1))
′∂ωgn(θ(ω2)) can change sign. This implies that there are values

for which σmin[∂ωgn(θ(ω1))
′∂ωgn(θ(ω2))] = |∂ωgn(θ(ω1))

′∂ωgn(θ(ω2))| = 0, a violation

of the rank condition. In fact, Qn has multiple local minima: an indication that the

rank conditions do not hold.
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Figure B.5.5: Non-convexity and the rank condition

Legend: One-dimensional plots over θ(ω) = ωθ̃n + (1 − ω)θ̂n, where ω ∈ [0, 1],
θ̂n = (3.20,−0.34, 0.54), θ̃n = (9.67,−0.19, 0.47). The GMM objective (panel a) is
non-convex, the sample moments (panel b) do not satisfy the rank condition.
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B.6 ADDITIONAL MATERIAL FOR ALGORITHMS

B.6.1 General overview of Algorithms properties

The following describes three of the algorithms in Table B.3.1: Nelder-Mead, Grid

Search, Multi-Start, and Simulated Annealing. The goal is to give a brief overview

of their known convergence properties; further description for each method is

given in Appendix B.6.

Notation: Qn is a continuous objective function to be minimized over Θ, a convex

and compact subset of Rp, p ≥ 1, θ̂n denotes the solution to this minimization

problem.

Nelder-Mead. Also called the simplex algorithm, the Nelder & Mead (1965, NM)

algorithm comes out as a standard choice for empirical work in our survey. No-

tably, it was used in Berry et al. (1995, Sec6.5) to estimate the BLP model for the

automobile industry. Its main feature is that it can be used even if Qn is not con-

tinuous. It is often referred to as a local derivative-free optimizer. It belongs to the

direct search family, which includes pattern search seen in Table B.3.1 above.

Despite being widely used, formal convergence results for the simplex algo-

rithm are few. Notably, Lagarias et al. (1998) proved convergence for strictly con-

vex continuous functions for p = 1, and a smaller class of functions for p = 2

parameters. McKinnon (1998) gave counter-examples for p = 2 of smooth, strictly

convex functions for which the algorithm converges to a point that is neither a lo-

cal nor a global optimum, i.e. does not satisfy a first-order condition.8 Using the

algorithm once may not produce consistent estimates in well-behaved problems so

8Powell (1973) gives additional counter-examples for the class of direct search algorithms which
includes NM and Pattern Search.
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it is sometimes combined with a multiple starting value strategy, described below.

The TIKTAK Algorithm of Arnoud et al. (2019) builds on NM with multiple starting

values. Despite these potential limitations, NM remains popular in empirical work.

Grid-Search. As the name suggests, a grid-search returns the minimizer of Qn

over a finite grid of points. In Economics, it is sometimes used to estimate mod-

els where the number of parameters p is not too large. One notable example is

Donaldson (2018), who estimates p = 3 non-linear coefficients in a gravity model.

Contrary to NM above, grid-search has global convergence guarantees. How-

ever, convergence is very slow. Suppose we want the minimizer θ̃k over a grid of

k points to satisfy: Qn(θ̃k)−Qn(θ̂n) ≤ ε. Then the search requires at least k ≥ Cε−p

grid points where C depends on Qn and the bounds used for the grid. Suppose

C = 1, p = 3, ε = 10−2, at least k ≥ 106 grid points are needed, which is quite large.

If each moment evaluation requires 45s, as in Lise & Robin (2017), this translates

into 1.5 years of computation time.

Simulated Annealing. Unlike the methods above, Simulated Annealing (SA) is

not a deterministic but a Monte Carlo based optimization method. Along with

NM, SA stands out as the standard choice in empirical work. Like the grid-search,

SA is guaranteed to converge, with high probability, as the number of iterations

increases for an appropriate choice of tuning parameters. The main issue is that

tuning parameters for which convergence results have been established result in

very slow convergence: ∥θk − θ̂n∥ ≤ Op(1/
√

log[k]), after k iterations. As a result,

SA could - in theory - converge more slowly than a grid-search. Chernozhukov &

Hong (2003) consider the frequentist properties of a GMM-based quasi-Bayesian

posterior distribution. Draws can be sampled using the random-walk Metropolis-
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Hastings algorithm, which is closely related to SA.

Multiple Starting Values. To accommodate some of the limitations of optimiz-

ers, especially the lack of global convergence guarantees, it is common to run a

given algorithm with multiple starting values. Setting the starting values is simi-

lar to choosing a grid for a grid-search. Andrews (1997) provides a stopping rule

which can be used to determine if sufficiently many starting values were used or

not. The required number of starting values depends on the objective function Qn,

the choice of the optimizer, and the properties of the sequence used to generate

starting values.

B.6.2 Implementation of the algorithms

The Nelder-Mead algorithm. The following description of the algorithm is

based on Nash (1990, Ch14) which R implements in the optimizer optim. The first

step is to build a simplex for the p-dimensional parameters, i.e. p+1 distinct points

θ1, . . . , θp+1 ordered s.t. Qn(θ1) ≤ · · · ≤ Qn(θp+1). The simplex is then transformed

at each iteration using four operations called reflection, expansion, reduction, and

contraction. The algorithm also repeatedly computes the centroid θc of the best

p points, to do so: take the best p guesses θ1, . . . , θp and compute their average:

θc = 1/p
∑p

ℓ=1 θℓ. Once this is done, go to step R below.
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Nelder-Mead Algorithm:

Inputs: Initial simplex θ1, . . . , θp+1, parameters α, γ, β, β′. NM suggest to use

α = 1, γ = 2, β = β′ = 1/2.

Re-order the points so that Qn(θ1) ≤ · · · ≤ Qn(θp+1), compute the centroid

θc = 1/p
∑p

ℓ=1 θℓ (average of the best p points)

Start at R and run until convergence:

R: The reflection step computes θr = θc+α(θc−θp+1) = 2θc−θp+1 for α = 1.

There are now several possibilities:

• If Qn(θr) < Qn(θ1) got to step E.

• If Qn(θ1) ≤ Qn(θr) ≤ Qn(θp), replace θp+1 with θr, re-order the

points, compute the new θc, and do R again.

• By elimination: Qn(θr) > Qn(θp). If Qn(θr) < Qn(θp+1), replace

θp+1 with θr. Either way, go to step R’.

E: The expansion step computes θe = θr + (γ − 1)(θr − θc) = 2θr − θc for

γ = 2. If Qn(θe) < Qn(θr), then θe replaces θp+1. Otherwise, θr replaces

θp+1. Once θp+1 is replaced, re-order the points, compute the new θc,

and go to R.

R’: The reduction step computes θs = θc + β(θp+1 − θc) = (θc + θp+1)/2 for

β = 1/2. If Qn(θs) < Qn(θp+1), θs replaces θp+1, then re-order the points,

compute the new θc, and go to R. Otherwise, go to C.

C: The contraction step updates θ2, . . . , θp+1 using θℓ = θ1 + β′(θℓ − θ1) =

(θℓ + θ1)/2 for β′ = 1/2. Re-order the points, compute the new θc, and

go to R.

Clearly, the choice of initial simplex can affect the convergence of the algorithm.
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Typically, one provides a starting value θ1 and then the software picks the remain-

ing p points of the simplex without user input. NM proposed their algorithm

with statistical estimation in mind, so they considered using the standard devi-

ation
√∑n+1

ℓ=1 (Qn(θℓ)− Q̄n)2/n < tol as a convergence criterion, setting tol = 10−8

and Q̄n the average of Qn(θℓ) in their application. Here convergence occurs when

the simplex collapses around a single point.

The Grid-Search algorithm. The procedure is very simple, pick a grid of k points

θ1, . . . , θk, and compute:

θ̃k = argminℓ=1,...,kQn(θℓ).

The optimization error ∥θ̃k − θ̂n∥ depends on both k and the choice of grid. The

following gives an overview of the approximation error and feasible error rates.

For simplicity, suppose that the parameter space is the unit ball in Rp: Θ =

Bp
2, and Qn is continuous. Under these assumptions, there is an L ≥ 0 such that

|Qn(θ1)−Qn(θ2)| ≤ L∥θ1−θ2∥. L > 0, unlessQn is constant. This implies: |Qn(θ̃k)−

Qn(θ̂n)| ≤ L(inf1≤ℓ≤k ∥θℓ − θ̂n∥). Suppose we want to ensure |Qn(θ̃k)−Qn(θ̂n)| ≤ ε,

then we need inf1≤ℓ≤k ∥θℓ − θ̂n∥ ≤ ε/L. Packing arguments (e.g. Vershynin, 2018,

Proposition 4.2.12) give a lower bound for k over all grids, and all possible θ̂n:

k ≥ vol(Bp
2)/vol([ε/L]Bp

2) = [ε/L]−p, where vol is the volume.

For the choice of grid, Niederreiter (1983, Theorem 3) shows that low-

discrepancy sequences, e.g. the Sobol or Halton points sets, can achieve this rate,

up to a logarithmic term.9 This is indeed a common choice for multi-start and grid

search optimization.

9In comparison, using uniform random draws in a grid search would require O([ε/L]−2p) itera-
tions to achieve the same level of accuracy with high-probability. Fang & Wang (1993, Ch3.1) give
a review of these results.
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In practice, Qn(θ̃k)−Qn(θ̂n) is typically not the quantity of interest for empirical

estimations, rather we are interested in ∥θ̃k − θ̂n∥. Suppose, in addition, that θ̂n ∈

int(Θ), and Qn is twice continuously differentiable with positive definite Hessian

Hn(θ̂n), a local identification condition. Then there exists 0 < λ ≤ λ < ∞ and

ε1 > 0 s.t. ∥θ − θ̂n∥ ≤ ε1 implies:

λ∥θ − θ̂n∥2 ≤ Qn(θ)−Qn(θ̂n) ≤ λ∥θ − θ̂n∥2, (B.6.11)

i.e. Qn is locally strictly convex.10 If θ̂n is the unique minimizer of Qn, there is a

0 < ε2 ≤ ε1 such that inf∥θ−θ̂n∥≥ε1
Qn(θ) > Qn(θ̂n)+λε

2
2, using a global identification

condition. Now, by local identification: ∥θ − θ̂n∥ ≤ ε2 ⇒ Qn(θ) ≤ Qn(θ̂n) + λε22 <

inf∥θ−θ̂n∥≥ε1
Qn(θ). As soon as k ≥ k0 where inf1≤ℓ≤k0 ∥θℓ − θ̂n∥ ≤ ε2, we have ∥θ̃k −

θ̂n∥ ≤ ε1. Then, for any k ≥ k0: λ∥θ̃k−θ̂n∥2 ≤ Qn(θ̃k)−Qn(θ̂n) ≤ λ(inf1≤ℓ≤k ∥θℓ−θ̂n∥2)

and ∥θ̃k − θ̂n∥ ≤ [λ/λ]1/2(inf1≤ℓ≤k ∥θℓ − θ̂n∥).

This reveals the interplay between the identification conditions and the opti-

mization error. The best value θ̃k is only guaranteed to be near θ̂n when k ≥ ε−p
2

iterations (using packing arguments for the unit ball), where ε2 depends on the

global identification condition. Local convergence depends on the ratio λ/λ ≥ 1

which is infinite when Hn(θ̂n) is singular. The main drawback of a grid search

is its slow convergence. To illustrate, Colacito et al. (2018, pp3443-3445) estimate

p = 5 parameters using a grid search with k = 1551 points. For simplicity, suppose

λ/λ = 1, k0 < k, and Θ = Bp
2, the unit ball, then the worst-case optimization error

is supθ̂n∈Θ(inf1≤ℓ≤k ∥θℓ − θ̂n∥) ≥ k−1/p ≃ 0.23. This is ten times larger than all but

one of the standard errors reported in the chapter.

10The three ε1, λ, λ only depend on Hn(·).
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Simulated Annealing. Implementations can vary across software, the following

will focus on the implementation used in R’s optim function.

Simulated Annealing Algorithm:

Inputs: Starting value θ1 ∈ Θ, temperature schedule ∞ > T2 ≥ T3 ≥ · · · > 0,

a sequence ∞ > η2 ≥ η3 ≥ · · · > 0, and maximum number of iterations k.

Common choice: Tℓ = T1/ log(ℓ) for ℓ ≥ 2 and ηℓ proportional to Tℓ.

For ℓ ∈ {2, . . . , k}, repeat:

1. Draw θ⋆ ∼ N (θℓ−1, ηℓId), and uℓ ∼ U[0,1]

2. Set θℓ = θ⋆ if uℓ ≤ exp(−[Qn(θ
⋆)−Qn(θℓ−1)]/Tℓ), otherwise set θℓ = θℓ−1

Output: Return θ̃k = argmin1≤ℓ≤kQn(θℓ)

The implementation described above relies on the random-walk Metropolis up-

date. Notice that ifQn(θ
⋆) ≤ Qn(θℓ−1), the exponential term in step 2 is greater than

1 and θ⋆ is always accepted as the next θℓ, regardless of uℓ. Bélisle (1992) gave suf-

ficient condition for θ̃k
a.s.→ θ̂n when k → ∞ and Qn is continuous. In practice,

the performance of the Algorithm can be measured by its convergence rate. To

get some intuition, we give some simplified derivations below which highlight

the role of Tk and several quantities which appeared in our discussion of the grid

search.

First, notice that for each k, steps 1-2 implement the Metropolis algorithm also

used for Bayesian inference using random-walk Metropolis-Hastings. The invari-
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ant distribution of these two steps is:

fk(θ) =
exp(−[Qn(θ)−Qn(θ̂n)]/Tk)∫

Θ
exp(−[Qn(θ)−Qn(θ̂n)]/Tk)dθ

,

this is called the Gibbs-Boltzmann distribution. When T∞ = +∞, f∞ puts all the

probability mass on the unique minimum θ̂n. To build intuition, suppose that k ≥

1: θk ∼ fk. Because SA is a stochastic algorithm, the approximation error ∥θk − θ̂n∥

is random, but can be quantified using P(∥θk − θ̂n∥ ≥ ε). In the following we will

assume the temperature schedule to be Tk = T1/ log(k), as implemented in R.

The following relies on the same setting, notation and assumptions as the grid

search above. First, we can bound the probability that θk is outside the ε1-local

neighborhood of θ̂n whereQn is approximately quadratic: P(∥θk− θ̂n∥ ≥ ε1). Using

the global identification condition:

exp(−[Qn(θ)−Qn(θ̂n)]/Tk) ≤ exp(−λε22/Tk) = k−λε22/T1 , if ∥θ − θ̂n∥ ≥ ε1,

where ε1, ε2 were defined in the grid search section above. This gives an upper

bound for the numerator in fk(θk). A lower bound is also required for the denom-

inator. Using (B.6.11) and the change of variable θ = θ̂n +
√
Tkh, we have:

exp(−λ∥h∥2) ≤ exp(−[Qn(θ̂n +
√
Tkh)−Qn(θ̂n)]/Tk)

≤ exp(−λ∥h∥2), if ∥
√
Tkh∥ ≤ ε1.
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Suppose Tk ≤ ε21, the two inequalities give us the bound:

P(∥θk − θ̂n∥ ≥ ε1) ≤
k−λε22/T1vol(Θ)

|Tk|p/2
∫
∥h∥≤1

exp(−λ∥h∥2)dh
= C[log(k)]d/2k−λε22/T1 .

This upper bound declines more slowly than for the grid search when λε22/T1 <

1/p, which can be the case if T1 large and/or ε2 is small. For the lower bound, pick

any ε ∈ (0, ε1/
√
Tk):

P(∥θk − θ̂n∥ ≤
√
Tkε) ≥

∫
∥h∥≤ε

exp(−λ∥h∥2)dh∫
∥h∥∈R exp(−λ∥h∥2)dh+ |Tk|−p/2vol(Θ)k−λε22/T1

,

which has a strictly positive limit. This implies that
√

log(k)∥θk − θ̂n∥ ≥ Op(1),

since Tk = T1/ log(k). This
√

log(k) rate is slower than the grid search. To get

faster convergence, some authors have suggested using Tk = T1/k and, by default,

Matlab sets Tk = T1 · 0.95k. However, theoretical guarantees to have θk
p→ θ̂n, as

k → ∞ are only available when Tk = T1/ log(k).11

11See Spall (2005, Ch8.4-8.6) for additional details and references.
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APPENDIX C

Supplementary Materials for Chapter Three

C.1 PROOFS

Lemma 1: (Inverse Mills ratio). If X is a normally distributed random variable with

mean µ and variance σ2, then

E(X | X > α) = µ+ σ
ϕ(α−µ

σ
)

1− Φ(α−µ
σ

)

where ϕ and Φ are the p.d.f. and c.d.f. of the Normal, respectively.

Proof of Proposition 2:

Part 1: mean and variance of box-office revenue conditional on production

(i) Given two normal distributions π | t and y|π, t, f(π|y, t) ∝ f(y | π, t)f(π | t).

Hence

π|y, t ∼ N(E(π|y, t), V ar(π|y, t)), y|t ∼ N(µt, σ
2
πt + σ2

yt)

where:

E(π|y, t) = σ2
πt

σ2
πt + σ2

yt

y +
σ2
yt

σ2
πt + σ2

yt

µt ∼ N(µt,
σ4
πt

σ2
πt + σ2

yt

)

V ar(π|y, t) =
σ2
πtσ

2
yt

σ2
πt + σ2

yt

With an abuse of notation, denote πt as π | t, and yt as y | t, then by Lemma 1
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and the law of total expectation:

E(πt|yt > ȳt) = E(πt | E(πt | yt) > π0)

= E(E(πt | yt) | E(πt | yt) > π0)

= µt + σ
ϕ(π0−µt

σ
)

1− Φ(π0−µt

σ
)
(3)

where σ2 =
σ4
πt

σ2
πt

+σ2
yt

END.

(ii) Now for variance:

V ar(πt|yt > ȳt) = V ar(πt|E(πt|yt) > π0)

= E(π2
t |E(πt|yt) > π0)− E2(πt|E(πt|yt) > π0)

= E(E(π2
t |yt)|E(πt|yt) > π0)− E2(πt|E(πt|yt) > π0)

= E([V ar(πt|yt) + E2(πt|yt)]|E(πt|yt) > π0)

− E2(E(πt|yt)|E(πt|yt) > π0)

=
σ2
πt
σ2
yt

σ2
πt
+ σ2

yt

+ E
(
E2(πt|yt)|E(πt|yt) > π0

)
− E2

(
E(πt|yt)|E(πt|yt) > π0

)
(4)

For a standard normal distribution, z ∼ N(0, 1).
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E(z2|z > c) =
1

1− Φ(c)

∞∫
c

z2√
2π
exp
(
− z2

2

)
dz

=
1

1− Φ(c)

∞∫
c

(
1√
2π
exp
(
− z2

2

)
−
( z√

2π
exp
(
− z2

2

))′)
dz

=
1

1− Φ(c)

∞∫
c

(
1√
2π
exp
(
− z2

2

)
−
( z√

2π
exp
(
− z2

2

))′)
dz

=
1

1− Φ(c)

∞∫
c

(
1√
2π
exp
(
− z2

2

)
−
( z√

2π
exp
(
− z2

2

))′)
dz

= 1 +
cϕ(c)

1− Φ(c)

So, for x ∼ N(µ, σ2)

1 +
c−µ
σ
ϕ( c−µ

σ
)

1− Φ( c−µ
σ
)
= E

((x− µ

σ

)2
|x− µ

σ
>
c− µ

σ

)

=
1

σ2

(
E(x2|x > c)− 2µE(x|x > c) + µ2

)
Combining with

E(x|x > c) = µ+ σ
ϕ( c−µ

σ
)

1− Φ( c−µ
σ
)

we obtain

E(x2|x > c) = σ2 + σ2
c−µ
σ
ϕ( c−µ

σ
)

1− Φ( c−µ
σ
)
+ µ2 + 2µσ

ϕ( c−µ
σ
)

1− Φ( c−µ
σ
)

Plugging in (4) yields

V ar(πt|E(πt|yt) > π0) =
σ2
πt
σ2
yt

σ2
πt
+ σ2

yt

+ σ2 + σ2
π0−µt

σ
ϕ(π0−µt

σ
)

1− Φ(π0−µt

σ
)

− σ2

(
ϕ(π0−µt

σ
)

1− Φ(π0−µt

σ
)

)2

(I)
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Then, (I) = σ2
πt
+ σ2(xλ(x)− λ2(x)), by σ2 =

σ4
πt

σ2
πt

+σ2
yt

, x = π0−µt

σ
, λ(x) = ϕ(x)

1−Φ(x)

END.

Part 2: comparative statics

Building blocks

Lemma 2: For λ(x) = ϕ(x)
1−Φ(x)

, 3x+
√
x2+8
4

< λ(x) < x+
√
x2+4
2

for x ∈ R.

Proof: Normally, a computer can confirm this lemma. However, when x > 7,

both the numerator and the denominator of λ are so close to 0 that the value for λ

is heavily biased. Hence, this proof will only target the case where x > 7.

First, taking the first derivative of ϕ(x) = 1√
2π
e−

x2

2 yields ϕ′
(x) = −x 1√

2π
e−

x2

2 =

−xϕ(x). It follows that

1− Φ(x) =

∞∫
x

ϕ(u)du

= −
∞∫
x

ϕ′(u)

u
du

=
ϕ(x)

x
− ϕ(x)

x3
+

3ϕ(x)

x5
− 15ϕ(x)

x7
+

∞∫
x

105ϕ(u)

u8
du

=
ϕ(x)

x
− ϕ(x)

x3
+

3ϕ(x)

x5
− 15ϕ(x)

x7
+

105ϕ(x)

x9
−

∞∫
x

945ϕ(u)

u10
du
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Then

1
1
x
− 1

x3 +
3
x5 − 15

x7 +
105
x9

<
ϕ(x)

1− Φ(x)
<

1
1
x
− 1

x3 +
3
x5 − 15

x7

when x > 7

Let the left (right) term of the inequality be denoted as LHS (RHS). We first

prove that when x > 7, LHS > 3x+
√
x2+8
4

. Assume that this is true. Then

LHS >
3x+

√
x2 + 8

4

⇐⇒ (x9 + 3x7 − 9x5 + 45x3 − 315x)2 > (x2 + 8)(x8 − x6 + 3x4 − 15x2 + 105)2

⇐⇒ x18 + 6x16 − 9x14 + 36x12 − 279x10 − 27000x8 + 7695x6 − 28350x4 + 99225x2 >

x18 + 6x16 − 9x14 + 20x12 − 39x10 + 1692x8 − 1545x6 + 3690x4 − 14175x2 + 88200

⇐⇒ 16x12 − 240x10 − 4392x8 + 9240x6 − 32040x4 + 113400x2 − 88200 > 0

Then for x > 7, 16x12 > 16 ∗ 72x10, i.e. 16x12 > 784x10, which is true.

We now prove that when x > 7, RHS < x+
√
x2+4
2

⇐⇒ (x7 + x5 − 3x3 + 15x)2 < (x2 + 4)(x6 − x4 + 3x2 − 15)2

⇐⇒ x14 + 2x12 − 5x10 + 24x8 + 39x6 − 90x4 + 225x2 <

x14 + 2x12 − x10 − 8x8 − 105x6 + 66x4 − 135x2 + 900

⇐⇒ x10 − 8x8 − 36x6 + 39x4 − 90x2 + 225 > 0

Then for x > 7, x10 > 72x8, i.e. x10 > 49x8, which is also true.

A computer can easily confirm that the lemma holds also for x < 7, which com-

pletes the proof. In addition, for x > 0, we can show that x < 3x+
√
x2+8
4

< λ(x) <

x+
√
x2+4
2

< x+ 1
x
.

END.
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Comparative statics 2(a):

(i) Let x = π0−µ
σ

. Then

d(3)

dµ
= 1 + σλ′(x) = 1 + σ(−xλ(x) + λ2(x))

(
− 1

σ

)
= −

(
λ(x)− x+

√
x2 + 4

2

)(
λ(x)− x−

√
x2 + 4

2

)
(i)

By Lemma 2, d(3)
dµ

> 0 ∀x ∈ R.

END.

(ii) Again let x = π0−µ
σ

. Then

d(I)

dµ
= σ2(λ(x) + xλ′(x)− 2λ(x)λ′(x))

(
− 1

σ

)
= −σ

(
λ(x)− x2λ(x) + 3xλ2(x)− 2λ3(x)

)
= σλ(x)

(
λ(x)− 3x+

√
x2 + 8

4

)(
λ(x)− 3x−

√
x2 + 8

4

)

By Lemma 2, d(I)
dµ

> 0 ∀x ∈ R.

END.

Comparative statics 2(b):

(i)
d(3)

dπ0
= σλ′(x) = σ(−xλ(x) + λ2(x))(

1

σ
) = (−x+ λ(x))λ(x) > 0

.

END.
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(ii) See the proof for 2(a), (ii).

END.

Comparative statics 2(c):

(i)

d(3)

dσ
= σλ′(x)+λ(x) =

(
−xλ(x)+λ2(x)

)(
− y0 − µt

σ

)
+λ(x) = λ(x)

(
1+x2−xλ(x)

)
(4)

where, again, σ =
σ2
πt√

σ2
πt+σ2

yt

, x = π0−µt

σ
, x > 0 , and λ(x) = ϕ(x)

1−Φ(x)
.

When x > 0, we can write (4) = xλ(x)( 1
x
+ x − λ(x)). By Lemma 2 and

x+
√
x2+4
2

< x+ 1
x
, (4) > 0 holds.

When x < 0, (4) > 0 clearly holds.

Hence, if σ2
yt increases, then σ2 decreases and (3), i.e. Et decreases too.

END.

(ii)

d(I)

dσ2
yt

= σ4
yt

(
xλ(x)− λ2(x)

)′
(σ2

πt + σ2
yt)−

(
xλ(x)− λ2(x)

)
(σ2

πt + σ2
yt)

2

= σ4
πt

(
λ(x)

(
1− x2 + 3xλ(x)− 2λ2(x)

)
σ2
πt + σ2

yt

(
− π0 − µ

σ2

)(
− σ2

πt

2(σ2
πt + σ2

yt)
3
2

)
− xλ(x)− λ2(x)

(σ2
πt + σ2

yt)
2

)

= −2x
λ(x)σ4

πt

2(σ2
πt + σ2

yt)
2

(
λ(x)− x

2

)(
λ(x)− x− 1

x

)
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When x > 0, x < λ(x) < x+ 1/x, which implies that d(I)

dσ2
yt
> 0.

When x < 0, it is easy to see that d(I)

dσ2
yt
> 0.

Hence, if σ2
yt increases, (I), i.e. V art increases too.

END.

C.2 ALTERNATIVE DISTRIBUTIONAL ASSUMPTIONS

In this appendix, we explore the robustness of our results to alternative distribu-

tional assumptions.

C.2.1 Beta-Binomial distribution

C.2.1.1 Setup

We first consider the case where the producer cares only about a binary criterion,

whether the movie will be a “hit” or not.

Assume the object of interest is p, the probability that the movie is a hit. The

prior distribution of p is Beta with parameters α and β:

p ∼ Beta(α, β)

Therefore:

f(p) ∝ pα−1(1− p)β−1

E(p) =
α

α + β

V (p) =
αβ

(α + β + 1)(α + β)2
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Producers observe a signal y, which, conditional on the true p, is distributed

binomial with parameters n and p. We can think of this as the producer consulting

with n critics, and each one independently assessing whether the movie will be a

hit or not, with probability p.

f(y|p) =
(
n

y

)
py(1− p)(n−y)

It follows that the posterior density of p given y is

f(p|y) ∝ pα−1(1− p)β−1py(1− p)n−y

⇒ p|y ∼ Beta(α + y, β + n− y)

Therefore,

E(p|y) = α + y

α + y + β + n− y
=

α + y

α + β + n

The producer will produce the movie if E(p|y) > p0, for some predetermined

p0. Therefore, the signal threshold for production ȳ is:

ȳ ≡ p0(α + β + n)− α.

It is convenient to use a reparametrization, letting κ = α + β. If α, β > 1, then

κ captures the spread of the distribution: for a given α, a higher value of κ means

that the distribution is more concentrated, i.e., the prior is more informative.1

1Under this parameterization, the mean of the prior distribution is E(p) = α
κ and the variance

is V (p) = α(κ−α)
κ2(κ−1) . For α, β > 1, the variance is strictly decreasing in κ.
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Let s = y/n be the success rate of the signal. Expressing the signal threshold in

terms of s, the movie is produced if and only if

s > s̄ ≡ p0 +
κ

n
(p0 −

α

κ
)

C.2.1.2 Comparative statics for production

(1) Customer discrimination. We interpret customer discrimination against

non-white movies as αb < αw. That is, non white movies have a lower prior

probability of being a hit. The signal threshold is decreasing in α:

∂s̄

∂α
< 0.

Therefore, under customer discrimination, the signal threshold for non-white

movies is higher than the signal threshold for white movies.

(2) Taste-based discrimination. We interpret taste-based discrimination against

non-white movies as p0b > p0w. That is, non-white movies are held to a higher

standard, and are produced only if the posterior probability of the movie

being a hit exceeds a higher threshold. The signal threshold is increasing in

p0:

∂s̄

∂p0
> 0.

Therefore, under taste-based discrimination, the signal threshold for non-

white movies is higher than the signal threshold for white movies.

(3) Statistical discrimination. Finally, we interpret statistical discrimination as

nb < nw. That is, the signal for non-white movies being is less informative
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than that for white movies. The derivative of the signal threshold with re-

spect to n is:

∂s̄

∂n
= − κ

n2
(p0 −

α

κ
)

The sign of this derivative depends on p0 −α/κ. Under this parametrization,

α/κ is the prior mean of p. In other words, we have the same qualitative

result as in the log-normal model presented in the main text.

(i) If p0 > α/κ, (i.e., the producer wants to produce only movies with a

very high probability of being a hit),

∂s̄

∂n
< 0;

that is, a less precise signal (lower n) raises the signal threshold. The

signal threshold for non-white movies is higher.

(ii) If p0 < α/κ, (i.e. the producer wants to weed out the very low quality

movies),

∂s̄

∂n
> 0;

now, a less precise signal (lower n) lowers the signal threshold. One can

be a bit more tolerant of a bad signal for non-white movies, because it

is difficult to say, based on the signal alone, whether the movie is really

bad.

It is easy to see that the comparative statics with respect to the precision of

the signal mirrors exactly what we had in the normal-normal case.
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C.2.1.3 Comparative statics for the observed success rate, conditional on production: sim-

ulations

We only observe whether a movie is a hit, conditional on production. Therefore,

as in the analysis in the main text, we need to characterize the the posterior distri-

bution of p conditional on s > s̄, and derive its comparative statics with respect to

p0, α and n. While it is not possible to derive an analytical solution for the compar-

ative statics, we can proceed by simulation. Specifically, for each set of parameter

values, we draw a sample of L movies, apply the production decision rule, and

report the mean and standard deviation of the posterior distribution p conditional

on production. The results are presented in Table B.1.
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Table B.1: Simulation results: Beta-binomial distribution

A: Taste based discrimination: p0 ↑ for Non-white movies
Fixed α = 4, κ = 8, n = 5 Trend

p0 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
mean 0.500 0.500 0.500 0.500 0.514 0.545 0.545 0.587 0.638 0.638 ↑

std 0.167 0.167 0.167 0.167 0.160 0.151 0.151 0.142 0.133 0.133 ↓

B: Customer discrimination: α ↓ for Non-white movies
Fixed p0 = 0.5, κ = 8, n = 5

α 6 5.5 5 4.5 4 3.5 3 2.5 2 1.5
mean 0.752 0.692 0.650 0.597 0.587 0.542 0.555 0.515 0.538 0.497 ↓

std 0.142 0.151 0.148 0.151 0.142 0.143 0.136 0.137 0.135 0.135 ↓

C1: Statistical discrimination, p0 > α/κ: n ↓ for Non-white movies
Fixed p0 = 0.6, κ = 8, α = 4

n 11 10 9 8 7 6 5 4 3 2
mean 0.673 0.656 0.679 0.659 0.638 0.662 0.638 0.666 0.637 0.600 ↓

std 0.115 0.119 0.117 0.122 0.128 0.126 0.133 0.131 0.139 0.148 ↑

C2: Statistical discrimination, p0 < α/κ: n ↓ for Non-white movies
Fixed p0 = 0.4, κ = 8, α = 4

n 11 10 9 8 7 6 5 4 3 2
mean 0.549 0.557 0.540 0.548 0.528 0.535 0.545 0.520 0.527 0.500 ↓

std 0.145 0.143 0.149 0.148 0.154 0.153 0.151 0.159 0.158 0.167 ↑
Legend: simulated data with sample size L = 106, using R with seed 123. Mean, Std: sample
average and standard deviation of the posterior distribution of p|s, s > s̄ from the simulation.

Each panel in the table presents a different comparative statics exercise. For

example, in Panel A, to examine the role of taste-based discrimination, we fix the

values of α, κ and n, and study what happens to the mean and standard deviation

of the posterior distribution of p as we increase the value of p0. The results in Panel

A show that as taste-based discrimination increases, the posterior expected value

of p increases, and the posterior standard deviation decreases. These results match

the predictions in the normal-normal model, derived analytically.

In Panel B we look at the effect of increasing customer discrimination increases.
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As in the normal model, both the expected value and the standard deviation in-

crease as the value of α decreases.2

In Panels C1 and C2 we study the effect of statistical discrimination, distin-

guishing between the case in which the producer only wants to produce very high

quality movies (p0 > α/κ) so that the signal threshold decreases in n (case 3.i in

Section C.2.1.2); and the one in which the producer wants to weed out very low

quality movies (p0 < α/κ) so that the signal threshold increases in n. We see that

in both cases the mean of p decreases and the standard deviation increases as the

extent of statistical discrimination increases (the signal becomes less prescise, or n

decreases). Again, the pattern of comparative statics results mirrors exactly what

we obtained in the normal-normal case (Section 3.3 in the main text).

We conclude that all of the main predictions of the theoretical model based on

the normal-normal case in the main text remain identical under the beta-binomial

model.

C.2.2 Pareto-Normal distribution

C.2.2.1 Setup

We now return to the case considered in the main text, where the producer cares

about (log) revenue, but we now depart from the normal-normal model. Specifi-

cally, we assume that ex-ante revenue π̃ (in dollars) follows a Pareto distribution:

π̃ ∼ Pareto(xm, a)

2In each panel, as we move in the table from left to right, we increase the extent of discrimination.
In the case of customer discrimination (Panel B) and statistical discrimination (Panel C), an increase
in discrimination implies a decrease in the parameter of interest.
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where xm is the minimum, and a is the shape parameter. The CDF is:

F (π̃) =


1− (xm

π̃
)a, if π̃ ≥ xm

0, if π̃ < xm

Then, log revenue π ≡ log(π̃) has a shifted exponential distribution: π ∼ Exp(a) +

log(xm), or, equivalently, log( π̃
xm

) ∼ Exp(a).

Therefore, the pdf of π is:

f(π) =


a ∗ exp(−a(π − log(xm))), if π ≥ log(xm)

0, if π < log(xm)

Producers observe a signal y, which, conditional on the true π is distributed

N(π, σ2
y).

f(y|π) = 1

σy
√
2π
exp(−1

2
(
y − π

σy
)2)

It follows that the posterior distribution of π given y is

f(π|y) ∝ exp(−a(π − log(xm))−
1

2
(
y − π

σy
)2), if π ≥ log(xm)

When π ≥ log(xm):

f(π|y) ∝ exp(−a(π − log(xm))−
1

2
(
y − π

σy
)2)

= exp(− 1

2σ2
y

(π2 − 2yπ + y2 + 2σ2
yaπ − 2σ2

ya log(xm)))
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= exp(− 1

2σ2
y

((π − (y − aσ2
y))

2 − a2σ4
y + 2yaσ2

y − 2σ2
ya log(xm)))

= exp(− 1

2σ2
y

((π − (y − aσ2
y))

2))× exp(−a(y −
aσ2

y

2
− log(xm)))

Given y, the second term is constant. Therefore, putting everything together,

we have that

f(π|y) ∝ exp(− 1

2σ2
y

((π − (y − aσ2
y))

2)), for π > log(xm).

This implies that the posterior distribution of π given the signal y is a truncated

normal derived from a normal distribution with mean y − aσ2
y , variance σ2

y and

lower truncation point log(xm). The posterior mean is therefore

E(π|y) = (y − aσ2
y) + σy

ϕ(log(xm))

1− Φ(log(xm))
.

The producer will produce the movie if E(π|y) > π0, for some predetermined

π0. Therefore, the signal threshold for production ȳ is:

ȳ ≡ π0 + aσ2
y − σy

ϕ(log(xm))

1− Φ(log(xm))
.

C.2.2.2 Comparative statics for production

(1) Customer discrimination: The expectation of an exponential distribution

with parameter a is 1/a. Therefore, we interpret customer discrimination
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against non-white movies as ab > aw. The signal threshold is increasing in a:

∂ȳ

∂a
> 0

As in the normal-normal case, the signal threshold for non-white movies is

higher than the signal threshold for white movies.

(2) Taste-based discrimination: We interpret taste-based discrimination against

non-white movies as π0b > π0w – non-white movies are held to a higher stan-

dard and are produced only if the posterior mean exceeds a threshold that is

higher than that set for white movies. The signal threshold increases in π0:

∂ȳ

∂π0
> 0.

Therefore, under taste-based discrimination, the signal threshold for non-

white movies is higher than that for white movies. This result mirrors that of

the normal-normal case.

(3) Statistical discrimination: We interpret statistical discrimination as σyb >

σyw, i.e., the signal for non-white movies is less precise. The derivative of the

signal threshold with respect to σy is:

∂ȳ

∂σy
= 2aσy −

ϕ(log(xm))

1− Φ(log(xm))

The sign of this derivative depends on the magnitude of σy.

(i) If σy >
ϕ(log(xm))

2a(1−Φ(log(xm)))
, (i.e., the movie has a high variance on the poten-
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tial outcome),

∂ȳ

∂σy
> 0;

that is, a less precise signal (lager σy) raises the signal threshold. The

signal threshold for non-white movies is higher.

(ii) If σy <
ϕ(log(xm))

2a(1−Φ(log(xm)))
, (i.e. the signal has good information on the movie

revenue),

∂ȳ

∂σy
< 0;

now, a less precise signal (larger σy) lowers the signal threshold. One can

be a bit more tolerant of a bad signal for non-white movies, because it

is difficult to say, based on the signal alone, whether the movie is really

bad.

Although the signal threshold for non-white movies could still have been

either higher or lower than that for white movies, the result does not depend

on whether producers only want to produce very high quality movies, or

they just want to weed out very low quality movies (i.e., it does not depend

on whether the revenue threshold π0 is above or below the prior mean of π,w

which is in contrast to the normal-normal model.

C.2.2.3 Comparative statics for observed revenue, conditional on production: simulations

As in Section C.2.1.3 we use simulations to characterize the posterior distribution

of observed revenue, conditional on production. We choose the parameters of the

Pareto distribution to roughly mimic the observed distribution of revenue in our
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sample. Therefore, in all simulations, we set xm = 20 (roughly equal to the min-

imum observed revenue in our sample) and set the baseline value of a at 0.2.3 In

this case, ϕ(log(xm))
2a(1−Φ(log(xm)))

≈ 8.2, so we choose σy = 8 as the baseline. The prior

mean is 1/a + log(xm) ≈ 8, so we choose π0 = 8 as the baseline. The results of the

simulations are presented in Table B.2.

3The maximum likelihood estimate of a in our full sample is 0.09; 0.18 if one excludes the bottom
10% of the distribution; and 0.22 if one excludes the bottom 25%. We chose a slightly higher value
of a as the baseline in our simulations because lower values of a will result in an implausibly large
fraction of movies with explosive revenues (the mean of a Pareto distribution with a < 1 is infinite).
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Table B.2: Simulation results: Pareto distribution

A: Taste based discrimination: π0 ↑ for Non-white movies
Fixed a = 0.2, σy = 8, xm = 20 Trend

π0 5 7 9 11 13 15 17 19 21 23
mean 8.091 8.164 8.252 8.374 8.548 8.767 9.041 9.381 9.800 10.309 ↑

std 5.041 5.081 5.108 5.173 5.270 5.362 5.521 5.686 5.888 6.137 ↑

Fixed a = 0.5, σy = 8, xm = 20 Trend
π0 5 7 9 11 13 15 17 19 21 23

mean 5.697 5.858 6.020 6.215 6.474 6.747 7.105 7.373 7.844 8.518 ↑
std 2.545 2.670 2.781 2.951 3.141 3.327 3.621 3.731 4.094 4.364 ↑

B: Customer discrimination: a ↑ for Non-white movies
Fixed π0 = 8, σy = 8, xm = 20

a 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
mean 13.056 9.786 8.198 7.315 6.769 6.428 6.201 6.040 5.944 5.837 ↓

std 10.012 6.711 5.083 4.168 3.587 3.242 3.008 2.833 2.742 2.628 ↓

C: Statistical discrimination: σy ↑ for Non-white movies
Fixed a = 0.2, π0 = 8, xm = 20

σy 1 2 3 4 5 6 7 8 9 10
mean 9.736 8.344 8.156 8.112 8.114 8.139 8.156 8.203 8.254 8.324 ?

std 5.082 5.072 5.045 5.026 5.027 5.061 5.078 5.087 5.128 5.168 ?

Fixed a = 0.5, π0 = 8, xm = 20
σy 1 2 3 4 5 6 7 8 9 10

mean 6.749 5.469 5.327 5.361 5.447 5.585 5.750 5.930 6.151 6.360 ?
std 2.216 2.167 2.152 2.203 2.278 2.412 2.565 2.725 2.933 3.118 ?

Legend: simulated data with sample size L = 106, using R with seed 123. Mean, Std: sample
average and standard deviation of the posterior distribution of π|y, y > ȳ from the simulation.

In Panel A we examine the role of taste-based discrimination. We fix the values

of a and σy and study what happens to the posterior mean and standard devia-

tion of (log) revenue conditional on production as we increase π0. The posterior

mean increases (as in the normal-normal case), while the standard deviation also

increases which is different from the normal-normal case.
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In Panel B we look at the effect of increasing customer discrimination by letting

a increase. Both the posterior mean and standard deviation decrease as the ex-

tent of customer discrimination increases, matching the predictions of the normal-

normal model.

Finally, in panel C we vary the extent of statistical discrimination by letting

σy increase, i.e., making the signal less precise. Here the results stand in contrast

with those of the normal-normal model: as the signal becomes less precise, both

the posterior mean of log revenue and the posterior standard deviation have a U-

shaped pattern, first decreasing and then increasing in the extent of noise in the

signal.

The comparative statics in the Pareto model are not identical to those in the

normal-normal model presented in the main text. However, the simulations show

that both the mean and the variance of log box-office revenue always move in the

same direction as we change the discrimination parameter, under all three forms

of discrimination. This is in contrast with the observed patterns in the data, where

the mean of log revenue is higher for non-white movies, but the variance of log

revenue is smaller (see Table 3.6 in the text).

C.3 MACHINE LEARNING ALGORITHM FOR FACIAL CLASSIFICATION

For performers that were not unambiguously classified by the human raters, we

applied the facial classification algorithm proposed by Anwar and Islam (2017)1.

The algorithm is based on a machine learning architecture that combines a con-

volutional neural network (CNN) and support vector machine (SVM), described

below.
1Link: https://arxiv.org/ftp/arxiv/papers/1709/1709.07429.pdf.

https://arxiv.org/ftp/arxiv/papers/1709/1709.07429.pdf
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Step 1. We started with a sample of more than 7000 motion pictures released

in the United States between 1997 and 2017, taken from Opus Data,2 a private

company that collects data on the industry. For each movie, we took the names of

the four top-billed performers. We then scraped and cropped the image appearing

on each performer’s page on the popular website IMDB.3

Step 2. We used the Visual Geometry Group4 (V.G.G.) technique to locate the

actor’s face on each picture. The output of this step is a vector of information

extracted from each image, or a “feature vector.”

Step 3. We repeated step 2 on our training data set, the Chicago Face Database

(CFD).5 This database is intended for use in scientific research. It is useful as it con-

tains images of 597 unique individuals (both male and female) who self-identify

as White, Black, Asian, or Latino/a.

Step 4. We used CFD to train our algorithm using the Support Vector Machine

(SVM) approach.6 Intuitively, the purpose of SVM is to find the “best separation

line,” meaning the hyper-plane that correctly separates white from non-white per-

formers when such performers are located in a multi-dimensional space through

their feature vectors.

Step 5. We applied our trained algorithm to the pictures obtained from Steps 1

and 2. We validated our algorithm on a subsample of actors for which we manually

coded the racial groups and obtained a success rate of 95%. A few examples of the

outcomes of our classification algorithm are presented in Figure C.1.

2www.opusdata.com
3www.imdb.com
4See for reference https://www.robots.ox.ac.uk/~vgg/.
5The CFD is available at https://www.chicagofaces.org/.
6See for reference https://scikit-learn.org/stable/modules/svm.html.

www.opusdata.com
www.imdb.com
https://www.robots.ox.ac.uk/~vgg/
https://www.chicagofaces.org/
https://scikit-learn.org/stable/modules/svm.html
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Figure C.1: Output of facial classification

C.4 OTHER FIGURES
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Figure D.1: Trend in consumer spending on digital home entertain-
ment, by category

Source: Statista (link.)

https://www.statista.com/statistics/296345/us-consumer-spendings-on-digital-entertainment-by-type/
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Figure D.2: Distribution of log cast star power across racial movie
types

Note: A one-sided t-test on the means calculated off the full distributions fails to reject the
null hypothesis that the white average is larger than the non-white average. Excluding
the left tail of the distributions (i.e., truncating the distributions from below at 5) makes

the means non significantly different.



231

BIBLIOGRAPHY

Abadie, A., Athey, S., Imbens, G. W., & Wooldridge, J. M. (2020). Sampling-based
versus design-based uncertainty in regression analysis. Econometrica, 88(1), pp.
265–296.

Abadie, A., Athey, S., Imbens, G. W., & Wooldridge, J. M. (2022). When Should
You Adjust Standard Errors for Clustering?*. The Quarterly Journal of Economics,
138(1), 1–35.

Adukia, A., Eble, A., Harrison, E., Runesha, H. B., & Szasz, T. (2023). What we
teach about race and gender: Representation in images and text of childrens
books. Quarterly Journal of Economics, 138(4), 2225–2285.

Agan, A., & Starr, S. (2018). Ban the box, criminal records, and racial discrimina-
tion: A field experiment. The Quarterly Journal of Economics, 133(1), 191–235.

Altonji, J. G., & Pierret, C. R. (2001). Employer learning and statistical discrimina-
tion. The Quarterly Journal of Economics, 116(1), 313–350.

Anderson, M. L. (2008). Multiple inference and gender differences in the effects
of early intervention: A reevaluation of the abecedarian, perry preschool, and
early training projects. Journal of the American Statistical Association, 103(484),
1481–1495.

Andrews, D. W. (1997). A stopping rule for the computation of generalized method
of moments estimators. Econometrica: Journal of the Econometric Society, (pp. 913–
931).

Angrist, J. D. (2014). The perils of peer effects. Labour Economics, 30, 98–108.

Anwar, I., & Islam, N. U. (2017). Learned features are better for ethnicity classifi-
cation. Cybernetics and Information Technologies, 17(3), 152–164.

Anwar, S., & Fang, H. (2015). Testing for racial prejudice in the parole board release
process: Theory and evidence. The Journal of Legal Studies, 44(1), 1–37.

Arnold, D., Dobbie, W., & Hull, P. (2022). Measuring racial discrimination in bail
decisions. American Economic Review, 112(9), 2992–3038.

Arnoud, A., Guvenen, F., & Kleineberg, T. (2019). Benchmarking global optimizers.
NBER Working Paper, (w26340).



232

Aronow, P. M. (2012). A general method for detecting interference between units
in randomized experiments. Sociological Methods & Research, 41(1), 3–16.

Aronow, P. M., Eckles, D., Samii, C., & Zonszein, S. (2020). Spillover effects in
experimental data. https://arxiv.org/abs/2001.05444.

Aronow, P. M., & Samii, C. (2017). Estimating average causal effects under gen-
eral interference, with application to a social network experiment. The Annals of
Applied Statistics, 11(4), 1912 – 1947.

Arrow, K. e. a. (1973). The theory of discrimination, discrimination in labor mar-
kets. In A. Achenfelter, & R. Ress (Eds.) Discrimination in Labor Markets. Prince-
ton, New Jersey: Princeton University Press.

Åslund, O., Hensvik, L., & Skans, O. N. (2014). Seeking similarity: How immi-
grants and natives manage in the labor market. Journal of Labor Economics, 32,
405441.

Athey, S., Eckles, D., & Imbens, G. W. (2018). Exact p-values for network interfer-
ence. Journal of the American Statistical Association, 113(521), 230–240.

Bar, R., & Zussman, A. (2017). Customer discrimination: Evidence from israel.
Journal of Labor Economics, 35(4), 1031–1059.

Barber, R. F., Candes, E. J., Ramdas, A., & Tibshirani, R. J. (2021). Predictive infer-
ence with the jackknife+. The Annals of Statistics, 49(1), 486–507.

Basse, G., Ding, P., Feller, A., & Toulis, P. (2024). Randomization tests for peer
effects in group formation experiments. Econometrica, 92(2), 567–590.

Basse, G., & Feller, A. (2018). Analyzing two-stage experiments in the presence of
interference. Journal of the American Statistical Association, 113(521), 41–55.

Basse, G. W., & Airoldi, E. M. (2018). Limitations of design-based causal inference
and a/b testing under arbitrary and network interference. Sociological Methodol-
ogy, 48(1), 136–151.

Basse, G. W., Feller, A., & Toulis, P. (2019). Randomization tests of causal effects
under interference. Biometrika, 106(2), 487–494.

Becker, G. S. (1957). The economics of discrimination. University of Chicago Press.

Bélisle, C. J. (1992). Convergence theorems for a class of simulated annealing algo-
rithms on Rd. Journal of Applied Probability, 29(4), 885–895.

Benson, A., Board, S., & ter Vehn, M. M. (2024). Discrimination in hiring: Evidence
from retail sales. Review of Economic Studies, 91(4), 1956–1987.

https://arxiv.org/abs/2001.05444


233

Berry, S., Levinsohn, J., & Pakes, A. (1995). Automobile Prices in Market Equilib-
rium. Econometrica, 63(4), 841.

Bertrand, M., & Duflo, E. (2017). Field experiments on discrimination. In Handbook
of economic field experiments, vol. 1, (pp. 309–393).

Bharadwaj, P., Deb, R., & Renou, L. (2024). Statistical discrimination and the dis-
tribution of wages. Unpublished manuscript.

Bhatia, R. (2013). Matrix Analysis, vol. 169. Springer Science & Business Media.

Blattman, C., Green, D. P., Ortega, D., & Tobón, S. (2021). Place-Based Interventions
at Scale: The Direct and Spillover Effects of Policing and City Services on Crime
[Clustering as a Design Problem]. Journal of the European Economic Association,
19(4), 2022–2051.

Bohren, J. A., Haggag, K., Imas, A., & Pope, D. G. (2023). Inaccurate statistical
discrimination: An identification problem. Review of Economics and Statistics,
(pp. 1–45).

Bond, R. M., Fariss, C. J., Jones, J. J., Kramer, A. D. I., Marlow, C., Settle, J. E.,
& Fowler, J. H. (2012). A 61-million-person experiment in social influence and
political mobilization. Nature, 489(7415), 295–298.

Bordalo, P., Coffman, K., Gennaioli, N., & Shleifer, A. (2016). Stereotypes. The
Quarterly Journal of Economics, 131(4), 1753–1794.

Borusyak, K., & Hull, P. (2023). Nonrandom exposure to exogenous shocks. Econo-
metrica : journal of the Econometric Society, 91 6, 2155–2185.

Bosch, A. (1986). The factorization of a square matrix into two symmetric matrices.
The American Mathematical Monthly, 93(6), 462–464.

Bowers, J., Fredrickson, M. M., & Panagopoulos, C. (2013). Reasoning about inter-
ference between units: A general framework. Political Analysis, 21(1), 97124.

Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge university
press.

Breza, E., Chandrasekhar, A. G., McCormick, T. H., & Pan, M. (2020). Using ag-
gregated relational data to feasibly identify network structure without network
data. American Economic Review, 110(8), 245484.

Brollo, F., Maria Kaufmann, K., & La Ferrara, E. (2020). Learning spillovers in
conditional welfare programmes: Evidence from brazil. The Economic Journal,
130(628), 853–879.



234

Brunner, D., Heiss, F., Romahn, A., & Weiser, C. (2017). Reliable estimation of random
coefficient logit demand models. 267. DICE Discussion Paper.

Burdekin, R. C., & Idson, T. L. (1991). Customer preferences, attendance and the
racial structure of professional basketball teams. Applied Economics, 23(1), 179–
186.

Cai, J., De Janvry, A., & Sadoulet, E. (2015). Social networks and the decision to
insure. American Economic Journal: Applied Economics, 7(2), 81108.

Canay, I. A., Mogstad, M., & Mountjoy, J. (2023). On the use of outcome tests for
detecting bias in decision making. The Review of Economic Studies. Accepted for
publication.

Caughey, D., Dafoe, A., Li, X., & Miratrix, L. (2023). Randomisation inference be-
yond the sharp null: bounded null hypotheses and quantiles of individual treat-
ment effects. Journal of the Royal Statistical Society Series B: Statistical Methodology,
85(5), 1471–1491.

Chan, A. (2024). Customer discrimination and quality signals.

Charles, K. K., & Guryan, J. (2008). Prejudice and wages: an empirical assessment
of becker’s the economics of discrimination. Journal of Political Economy, 116(5),
773–809.

Chernozhukov, V., & Hong, H. (2003). An mcmc approach to classical estimation.
Journal of Econometrics, 115(2), 293–346.

Cochrane, J. H. (2005). Asset Pricing. Princeton University Press.

Colacito, R., Croce, M., Ho, S., & Howard, P. (2018). Bkk the ez way: International
long-run growth news and capital flows. American Economic Review, 108(11),
3416–49.

Colella, F. (2021). Who benefits from support? the heterogeneous effects of sup-
porters on athletes’ performance by skin colour. Mimeo., Université de Lau-
sanne.

Combes, P.-P., Decreuse, B., Laouenan, M., & Trannoy, A. (2016). Customer dis-
crimination and employment outcomes: Theory and evidence from the french
labor market. Journal of Labor Economics, 34(1), 107–160.

Conlon, C., & Gortmaker, J. (2020). Best practices for differentiated products de-
mand estimation with pyblp. The RAND Journal of Economics, 51(4), 1108–1161.

Cox, D. R. (1958). Planning of Experiments. New York: Wiley.



235

Crimson Engine (2018). What does a producer actually do? https://www.
youtube.com/watch?v=71Oh4gQ-1jM.

Cui, R., Li, J., & Zhang, D. J. (2020). Reducing discrimination with reviews in
the sharing economy: Evidence from field experiments on airbnb. Management
Science, 66(3), 1071–1094.

de Paula, A., Richards-Shubik, S., & Tamer, E. (2018). Identifying preferences in
networks with bounded degree. Econometrica, 86(1), 263–288.

Dennis, J. E., & Schnabel, R. B. (1996). Numerical methods for unconstrained optimiza-
tion and nonlinear equations. SIAM.

Deuflhard, P. (2005). Newton methods for nonlinear problems: affine invariance and
adaptive algorithms, vol. 35. Springer Science & Business Media.

Ding, P., Feller, A., & Miratrix, L. (2016). Randomization inference for treatment
effect variation. Journal of the Royal Statistical Society. Series B (Statistical Method-
ology), 78(3), 655–671.

Doleac, J. L., & Stein, L. C. (2013). The visible hand: Race and online market out-
comes. The Economic Journal, 123(572), F469–F492.

Donaldson, D. (2018). Railroads of the raj: Estimating the impact of transportation
infrastructure. American Economic Review, 108(4-5), 899–934.

Dufour, J.-M., & Khalaf, L. (2003). Monte Carlo Test Methods in Econometrics,
chap. 23, (pp. 494–519). John Wiley & Sons, Ltd.

Dustmann, C., Glitz, A., & Schönberg, U. (2016). Referral-based job search net-
works. Review of Economic Studies, 83, 514546.

Esponda, I., Oprea, R., & Yuksel, S. (2022). Discrimination without reason: Biases
in statistical discrimination.

Fang, H., & Moro, A. (2011). Theories of statistical discrimination and affirmative
action: A survey. In Handbook of social economics, vol. 1, (pp. 133–200).

Fang, K.-T., & Wang, Y. (1993). Number-theoretic methods in statistics, vol. 51. CRC
Press.

Fisher, F. (1966). The Identification Problem in Econometrics. Economics handbook
series. McGraw-Hill.

Fong, C. M., & Luttmer, E. F. (2011). Do fairness and race matter in generosity?
evidence from a nationally representative charity experiment. Journal of Public
Economics, 95(5-6), 372–394.

https://www.youtube.com/watch?v=71Oh4gQ-1jM
https://www.youtube.com/watch?v=71Oh4gQ-1jM


236

Forneron, J.-J. (2023). Noisy, non-smooth, non-convex estimation of moment con-
dition models. arXiv preprint arXiv:2301.07196.

Fowdur, L., Kadiyali, V., & Prince, J. (2012). Racial bias in expert quality assess-
ment: A study of newspaper movie reviews. Journal of Economic Behavior & Or-
ganization, 84(1), 292–307.

Frobenius, G. (1910). Über die mit einer matrix vertauschbaren matrizen. In
Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften: Jahrgang
1910; Erster Halbband Januar bis Juni, (pp. 3–15). Verlag der Königlichen
Akademie der Wissenschaften.

Gallen, Y., & Wasserman, M. (2023). Does information affect homophily? Journal
of Public Economics, 222, 104876.

Gill, D., & Prowse, V. (2012). A structural analysis of disappointment aversion in a
real effort competition. American Economic Review, 102(1), 469–503.

Gladwell, M. (2006). The formula. Accessed: 2024-11-10, https://www.newyorker.
com/magazine/2006/10/16/the-formula.

Goldenberg, A., Zheng, A. X., Fienberg, S. E., & Airoldi, E. M. (2009). A survey of
statistical network models. ArXiv, abs/0912.5410.

Gourieroux, C., & Monfort, A. (1996). Simulation-based econometric methods. Oxford
university press.

Gourieroux, C., Monfort, A., & Renault, E. (1993). Indirect inference. Journal of
applied econometrics, 8(S1), S85–S118.

Graham, B. S. (2017). An econometric model of network formation with degree
heterogeneity. Econometrica, 85(4), 1033–1063.

Granovetter, M. S. (1973). The strength of weak ties. American Journal of Sociology,
78(6), 1360–1380.

Guan, L. (2023). A conformal test of linear models via permutation-augmented
regressions.

Guminov, S., Gasnikov, A., & Kuruzov, I. (2017). Accelerated methods for α-
weakly-quasi-convex problems. arXiv preprint arXiv:1710.00797.

Guryan, J., & Charles, K. K. (2013). Tastebased or statistical discrimination: the
economics of discrimination returns to its roots. The Economic Journal, 123(572),
F417–F432.

https://www.newyorker.com/magazine/2006/10/16/the-formula
https://www.newyorker.com/magazine/2006/10/16/the-formula


237

Hall, A. R., & Inoue, A. (2003). The large sample behaviour of the generalized
method of moments estimator in misspecified models. Journal of Econometrics,
114(2), 361–394.

Hansen, B. E., & Lee, S. (2021). Inference for iterated gmm under misspecification.
Econometrica, 89(3), 1419–1447.

Hedegaard, M. S., & Tyran, J.-R. (2018). The price of prejudice. American Economic
Journal: Applied Economics, 10, 4063.

Heid, P. (2023). A short note on an adaptive damped newton method for strongly
monotone and lipschitz continuous operator equations. Archiv der Mathematik,
121(1), 55–65.

Hennessy, J. P., Dasgupta, T., Miratrix, L. W., Pattanayak, C. W., & Sarkar, P. (2015).
A conditional randomization test to account for covariate imbalance in random-
ized experiments. Journal of Causal Inference, 4, 61 – 80.

Hinder, O., Sidford, A., & Sohoni, N. (2020). Near-optimal methods for minimizing
star-convex functions and beyond. In Conference on learning theory, (pp. 1894–
1938). PMLR.

Hoshino, T., & Yanagi, T. (2023). Randomization test for the specification of inter-
ference structure. https://arxiv.org/abs/2301.05580.

Hudgens, M. G., & Halloran, M. E. (2008). Toward causal inference with interfer-
ence. Journal of the American Statistical Association, 103(482), 832–842.

Imbens, G. W., & Rubin, D. B. (2015). Causal Inference for Statistics, Social, and
Biomedical Sciences: An Introduction. Cambridge University Press.

Jayachandran, S., de Laat, J., Lambin, E. F., Stanton, C. Y., Audy, R., & Thomas,
N. E. (2017). Cash for carbon: A randomized trial of payments for ecosystem
services to reduce deforestation. Science, 357(6348), 267–273.

Jennrich, R. I. (1969). Asymptotic properties of non-linear least squares estimators.
The Annals of Mathematical Statistics, 40(2), 633–643.

Kahn, L. M., & Sherer, P. D. (1988). Racial differences in professional basketball
players’ compensation. Journal of Labor Economics, 6(1), 40–61.

Karimi, H., Nutini, J., & Schmidt, M. (2016). Linear convergence of gradient and
proximal-gradient methods under the polyak-łojasiewicz condition. In Joint Eu-
ropean conference on machine learning and knowledge discovery in databases, (pp. 795–
811). Springer.

https://arxiv.org/abs/2301.05580


238

Kelly, B., Lustig, H., & Van Nieuwerburgh, S. (2016). Too-systemic-to-fail: What
option markets imply about sector-wide government guarantees. American Eco-
nomic Review, 106(6), 1278–1319.

Kelly, M. (2021). Persistence, Randomization, and Spatial Noise. Working Papers
202124, School of Economics, University College Dublin. https://ideas.repec.
org/p/ucn/wpaper/202124.html.

Kline, P., Rose, E. K., & Walters, C. R. (2022). Systemic discrimination among large
us employers. The Quarterly Journal of Economics, 137(4), 19632036.

Knittel, C. R., & Metaxoglou, K. (2014). Estimation of random-coefficient demand
models: two empiricists’ perspective. Review of Economics and Statistics, 96(1),
34–59.

Knowles, J., Persico, N., & Todd, P. (2001). Racial bias in motor vehicle searches:
Theory and evidence. Journal of Political Economy, 109(1), 203–229.

Komunjer, I. (2012). Global identification in nonlinear models with moment re-
strictions. Econometric Theory, 28(4), 719–729.

Kuehn, J., & Lampe, R. (2023). Competition and product composition: Evidence
from hollywood. International Journal of Industrial Organization, 91, 102981.

Kuppuswamy, V., & Younkin, P. (2020). Testing the theory of consumer discrim-
ination as an explanation for the lack of minority hiring in hollywood films.
Management Science, 66(3), 1227–1247.

Lagarias, J. C., Reeds, J. A., Wright, M. H., & Wright, P. E. (1998). Convergence
properties of the nelder–mead simplex method in low dimensions. SIAM Journal
on optimization, 9(1), 112–147.

Lang, K., & Lehmann, J.-Y. K. (2012). Racial discrimination in the labor market:
Theory and empirics. Journal of Economic Literature, 50(4), 959–1006.

Lang, K., & Spitzer, A. K. (2020). Race discrimination: An economic perspective.
Journal of Economic Perspectives, 34(2), 68–89.

Lash, M. T., & Zhao, K. (2016). Early predictions of movie success. Journal of
Management Information Systems, 33(3), 874–903.

Lehmann, E. L. E. L., & Romano, J. P. (2005). Testing statistical hypotheses. Springer
texts in statistics. New York: Springer, 3rd ed. ed.

Lemieux, C. (2009). Monte Carlo and Quasi-Monte Carlo Sampling. Springer Series
in Statistics. Springer New York.

https://ideas.repec.org/p/ucn/wpaper/202124.html
https://ideas.repec.org/p/ucn/wpaper/202124.html


239

Leonard, J. S., Levine, D. I., & Giuliano, L. (2010). Customer discrimination. The
Review of Economics and Statistics, 92(3), 670–678.

Leung, M. P. (2020). Treatment and Spillover Effects Under Network Interference.
The Review of Economics and Statistics, 102(2), 368–380.

Leung, M. P. (2022). Causal inference under approximate neighborhood interfer-
ence. Econometrica, 90(1), 267–293.

Li, X., Ding, P., Lin, Q., Yang, D., & Liu, J. S. (2018). Randomization inference for
peer effects. Journal of the American Statistical Association, 114, 1651 – 1664.

Li, X., Ding, P., & Rubin, D. B. (2016). Asymptotic theory of rerandomization in
treatmentcontrol experiments. Proceedings of the National Academy of Sciences, 115,
9157 – 9162.

Lippens, L., Baert, S., Ghekiere, A., Verhaeghe, P.-P., & Derous, E. (2020). Is
labour market discrimination against ethnic minorities better explained by taste
or statistics? a systematic review of the empirical evidence. Tech. rep., IZA Dis-
cussion Paper No. 13523.

Lise, J., & Robin, J.-M. (2017). The macrodynamics of sorting between workers and
firms. American Economic Review, 107(4), 1104–35.

List, J. A. (2004). The nature and extent of discrimination in the marketplace: Evi-
dence from the field. The Quarterly Journal of Economics, 119(1), 49–89.

Lojasiewicz, S. (1963). A topological property of real analytic subsets. Coll. du
CNRS, Les équations aux dérivées partielles, 117(87-89), 2.

Manski, C. F. (1993). Identification of endogenous social effects: The reflection
problem. The Review of Economic Studies, 60, 531–542.

McKinnon, K. I. (1998). Convergence of the nelder–mead simplex method to a
nonstationary point. SIAM Journal on optimization, 9(1), 148–158.

Meinshausen, N. (2008). Hierarchical testing of variable importance. Biometrika,
95(2), 265–278.

Miguel, E., & Kremer, M. (2004). Worms: Identifying impacts on education and
health in the presence of treatment externalities. Econometrica, 72(1), 159–217.

Moran, P., & Queralto, A. (2018). Innovation, productivity, and monetary policy.
Journal of Monetary Economics, 93, 24–41.

Moretti, E. (2011). Social learning and peer effects in consumption: Evidence from
movie sales. The Review of Economic Studies, 78(1), 356–393.



240

Motion Picture Association (2022). 2021 theme report. Accessed: 2024-
11-10, https : / / www. motionpictures . org / wp-content / uploads / 2022 / 03 /
MPA-2021-THEME-Report-FINAL.pdf.

Nardinelli, C., & Simon, C. (1990). Customer racial discrimination in the market
for memorabilia: The case of baseball. The Quarterly Journal of Economics, 105(3),
575–595.

Nash, J. C. (1990). Compact numerical methods for computers: linear algebra and func-
tion minimisation. Routledge.

Nelder, J. A., & Mead, R. (1965). A simplex method for function minimization. The
computer journal, 7(4), 308–313.

Nesterov, Y. (2018). Lectures on convex optimization. Springer optimization and its
applications. Cham, Switzerland: Springer International Publishing, 2 ed.

Nesterov, Y., & Polyak, B. T. (2006). Cubic regularization of newton method and its
global performance. Mathematical programming, 108(1), 177–205.

Neumark, D., Bank, R. J., & Van Nort, K. D. (1996). Sex discrimination in restaurant
hiring: An audit study. The Quarterly Journal of Economics, 111(3), 915–941.

Nevo, A. (2001). Measuring market power in the ready-to-eat cereal industry.
Econometrica, 69(2), 307–342.

Newey, W., & McFadden, D. (1994). Large sample estimation and hypothesis test-
ing. In Handbook of Econometrics, vol. 36:4, (pp. 2111–2234). North Holland.

Neyman, J., Iwaszkiewicz, K., & Koodziejczyk, S. (2018). Statistical Problems in
Agricultural Experimentation. Supplement to the Journal of the Royal Statistical
Society, 2(2), 107–154.

Niederreiter, H. (1983). A quasi-monte carlo method for the approximate compu-
tation of the extreme values of a function. In Studies in pure mathematics, (pp.
523–529). Springer.

Nocedal, J., & Wright, S. (2006). Numerical Optimzation. Springer, second ed.

Onuchic, P. (2022). Recent contributions to theories of discrimination. arXiv
preprint.

Owusu, J. (2023). Randomization inference of heterogeneous treatment effects un-
der network interference.

https://www.motionpictures.org/wp-content/uploads/2022/03/MPA-2021-THEME-Report-FINAL.pdf
https://www.motionpictures.org/wp-content/uploads/2022/03/MPA-2021-THEME-Report-FINAL.pdf


241

Paluck, E., Shepherd, H., & Aronow, P. (2016). Changing climates of conflict: A
social network experiment in 56 schools. Proceedings of the National Academy of
Sciences of the United States of America, 113(3), 566–571.

Phelps, E. S. (1972). The statistical theory of racism and sexism. The American
Economic Review, 62(4), 659–661.

Pierson, E. (2020). Assessing racial inequality in covid-19 testing with bayesian
threshold tests. arXiv preprint.

Pierson, E., Corbett-Davies, S., & Goel, S. (2018). Fast threshold tests for detecting
discrimination. In International conference on artificial intelligence and statistics, (pp.
96–105). PMLR.

Pollmann, M. (2023). Causal inference for spatial treatments.

Polyak, B., & Tremba, A. (2020). New versions of newton method: step-size choice,
convergence domain and under-determined equations. Optimization Methods and
Software, 35(6), 1272–1303.

Polyak, B. T. (1963). Gradient methods for minimizing functionals. Zhurnal vychis-
litel’noi matematiki i matematicheskoi fiziki, 3(4), 643–653.

Pouliot, G. (2024). An exact t-test.

Powell, M. J. (1973). On search directions for minimization algorithms. Mathemat-
ical programming, 4(1), 193–201.

Puelz, D., Basse, G., Feller, A., & Toulis, P. (2021). A Graph-Theoretic Approach to
Randomization Tests of Causal Effects under General Interference. Journal of the
Royal Statistical Society Series B: Statistical Methodology, 84(1), 174–204.

Rajkumar, K., Saint-Jacques, G., Bojinov, I., Brynjolfsson, E., & Aral, S. (2022). A
causal test of the strength of weak ties. Science, 377, 1304 – 1310.

Riley, E. (2024). Role models in movies: The impact of queen of katwe on students’
educational attainment. The Review of Economics and Statistics, 106(2), 334–351.

Ritzwoller, D. M., Romano, J. P., & Shaikh, A. M. (2025). Randomization inference:
Theory and applications. https://arxiv.org/abs/2406.09521.

Rockafellar, R. T. (2015). Convex Analysis. Princeton Landmarks in Mathematics
and Physics. Princeton, NJ: Princeton University Press,.

Rosenbaum, P. (2007). Interference between units in randomized experiments.
Journal of the American Statistical Association, 102(477), 191–200.

https://arxiv.org/abs/2406.09521


242

Rosenbaum, P. (2020). Design of Observational Studies. Springer Series in Statistics.
Springer International Publishing.

Rosenbaum, S. (1961). Moments of a truncated bivariate normal distribution. Jour-
nal of the Royal Statistical Society. Series B (Methodological), 23(2), 405–408.

Rothenberg, T. J. (1971). Identification in parametric models. Econometrica: Journal
of the Econometric Society, (pp. 577–591).

Sacerdote, B. (2001). Peer Effects with Random Assignment: Results for Dartmouth
Roommates*. The Quarterly Journal of Economics, 116(2), 681–704.

Salanié, B., & Wolak, F. A. (2022). Fast, detail-free, and approximately correct:
Estimating mixed demand systems.

Shirani, S., & Bayati, M. (2024). Causal message-passing for experiments with
unknown and general network interference. Proceedings of the National Academy
of Sciences, 121(40).

Sieg, H., & Yoon, C. (2017). Estimating dynamic games of electoral competition
to evaluate term limits in us gubernatorial elections. American Economic Review,
107(7), 1824–1857.

Simoiu, C., Corbett-Davies, S., & Goel, S. (2017). The problem of infra-marginality
in outcome tests for discrimination. arXiv preprint.

Snee, T. (2016). Predicting box office: Boffo or bomb? Accessed: 2024-11-10, https:
//now.uiowa.edu/news/2016/02/predicting-box-office-boffo-or-bomb.

Sobel, M. E. (2006). What do randomized studies of housing mobility demonstrate?
Journal of the American Statistical Association, 101(476), 1398–1407.

Solodov, M. V., & Svaiter, B. F. (2000). A truly globally convergent newton-type
method for the monotone nonlinear complementarity problem. SIAM Journal on
Optimization, 10(2), 605–625.

Spall, J. C. (2005). Introduction to stochastic search and optimization: estimation, simu-
lation, and control. John Wiley & Sons.

Sperling, N. (2020a). Academy sets new diversity requirements for oscars best
picture eligibility. The New York Times. Accessed: 2024-11-10.

Sperling, N. (2020b). The oscars will add a diversity requirement for eligibility. The
New York Times. Accessed: 2024-11-10.

https://now.uiowa.edu/news/2016/02/predicting-box-office-boffo-or-bomb
https://now.uiowa.edu/news/2016/02/predicting-box-office-boffo-or-bomb


243

Stone, E. W., & Warren, R. S. (1999). Customer discrimination in professional bas-
ketball: Evidence from the trading-card market. Applied Economics, 31(6), 679–
685.

Taylor, S. J., & Eckles, D. (2018). Randomized Experiments to Detect and Estimate Social
Influence in Networks, (pp. 289–322). Cham: Springer International Publishing.

Thompson, B. (2013). Solving equation of a hit film script, with data. Ac-
cessed: 2024-11-10, https://www.nytimes.com/2013/05/06/business/media/
solving-equation-of-a-hit-film-script-with-data.html.

Toulis, P., & Kao, E. (2013). Estimation of causal peer influence effects. In S. Das-
gupta, & D. McAllester (Eds.) Proceedings of the 30th International Conference on
Machine Learning, vol. 28 of Proceedings of Machine Learning Research, (pp. 1489–
1497). Atlanta, Georgia, USA: PMLR. https://proceedings.mlr.press/v28/
toulis13.html.

Vazquez-Bare, G. (2023). Identification and estimation of spillover effects in ran-
domized experiments. Journal of Econometrics, 237(1), 105237.

Vershynin, R. (2018). High-dimensional probability: An introduction with applications
in data science, vol. 47. Cambridge university press.

Viviano, D. (2022). Experimental design under network interference. https://
arxiv.org/abs/2003.08421.

Vovk, V., Nouretdinov, I., Manokhin, V., & Gammerman, A. (2018). Cross-
conformal predictive distributions. In A. Gammerman, V. Vovk, Z. Luo,
E. Smirnov, & R. Peeters (Eds.) Proceedings of the Seventh Workshop on Conformal
and Probabilistic Prediction and Applications, vol. 91 of Proceedings of Machine Learn-
ing Research, (pp. 37–51). PMLR. https://proceedings.mlr.press/v91/vovk18a.
html.

Wang, L. B., Bedant, O. P., Jiao, Z., & Wang, H. (2024). From friendship networks
to classroom dynamics: Leveraging neural networks, instrumental variable and
genetic algorithms for optimal educational outcomes. https://arxiv.org/abs/
2404.02497.

Wang, Y., Samii, C., Chang, H., & Aronow, P. M. (2023). Design-based inference for
spatial experiments under unknown interference.

Weaver, A. J. (2011). The role of actors’ race in white audiences’ selective exposure
to movies. Journal of Communication, 61(2), 369–385.

Weinstein, M. (1998). Profit-sharing contracts in hollywood: Evolution and analy-
sis. The Journal of Legal Studies, 27(1), 67–112.

https://www.nytimes.com/2013/05/06/business/media/solving-equation-of-a-hit-film-script-with-data.html
https://www.nytimes.com/2013/05/06/business/media/solving-equation-of-a-hit-film-script-with-data.html
https://proceedings.mlr.press/v28/toulis13.html
https://proceedings.mlr.press/v28/toulis13.html
https://arxiv.org/abs/2003.08421
https://arxiv.org/abs/2003.08421
https://proceedings.mlr.press/v91/vovk18a.html
https://proceedings.mlr.press/v91/vovk18a.html
https://arxiv.org/abs/2404.02497
https://arxiv.org/abs/2404.02497


244

Wen, K., Wang, T., & Wang, Y. (2023). Residual permutation test for high-
dimensional regression coefficient testing.

Wu, J., & Ding, P. (2021). Randomization tests for weak null hypotheses in random-
ized experiments. Journal of the American Statistical Association, 116(536), 1898–
1913.

Yahr, E. (2016). It’s hard to predict a movie’s profitability, but you learn some
lessons along the way. Accessed: 2024-11-10, https://www.washingtonpost.
com/news/arts-and-entertainment/wp/2016/05/16/.

Zhang, Y., & Zhao, Q. (2021). Multiple conditional randomization tests. arXiv:
Statistics Theory.

Zhang, Y., & Zhao, Q. (2023). What is a randomization test? Journal of the American
Statistical Association, 118(544), 2928–2942.

Zhao, A., & Ding, P. (2020). Covariate-adjusted fisher randomization tests for the
average treatment effect. Journal of Econometrics.

Zussman, A. (2013). Ethnic discrimination: Lessons from the israeli online market
for used cars. The Economic Journal, 123(572), F433–F468.

Zwick, E. (2024). Hits, flops, and other illusions: My Fortysomething Years in Holly-
wood. Gallery Books.

https://www.washingtonpost.com/news/arts-and-entertainment/wp/2016/05/16/
https://www.washingtonpost.com/news/arts-and-entertainment/wp/2016/05/16/


245

CURRICULUM VITAE

Liang Zhong, MA
Friday 18th April, 2025

85 Brainerd Rd
Allston MA 02134 USA

(617) 369-2010
610466047@qq.com

264 Bay state Rd
Boston University
Boston, MA 02215

samzl@bu.edu

Academic Training:

05/2025(expected) PhD Boston University, Boston, MA; Economics

05/2019 MA Boston University, Boston, MA; Econometrics and
Quantitative Economics

05/2017 BS Zhejiang University, Hang Zhou, China; Mathematics
and Applied Mathematics

Doctoral Research:

Title: Essays on Causal Inference, Structural Estimation, and their
Applications

Thesis advisor: Hiroaki Kaido, PhD

Defense date: April 2, 2025

Summary: This dissertation comprises three chapters that explore
two interconnected areas: the development of innovative
econometric tools to reduce computational complexities
and the analysis of strategic behaviors for actionable pol-
icy insights. The first two chapters introduce new statis-
tical approaches that link advanced econometric methods
with empirical research, while the third chapter connects
economic theory to practical applications by leveraging big
data techniques.


	Acknowledgements
	Abstract
	List of Tables
	List of Figures
	List of Symbols and Abbreviations
	Unconditional Randomization Tests for Interference
	Introduction
	Setup and Null Hypothesis of Interest
	Partially Sharp Null Hypothesis
	Two Technical Challenges for Randomization Tests

	Pairwise Imputation-based Randomization Test (PIRT)
	Pairwise Imputable Statistics
	Unconditional Randomization Test
	The Pairwise Comparison-Based p-values
	Comparison to Previous Literature

	Empirical Application
	Power Comparison of Spatial Interference: A Simulation Study
	Implementation of PIRTs for Testing the Existence of a Displacement Effect
	PIRT on Actual Data

	Conclusion

	Convexity Not Required: Estimation of Smooth Moment Condition Models
	Introduction
	GMM Estimation without Convexity
	Correctly-specified models
	Misspecified models

	Assumption 2 and its relation to the Literature
	Applications
	A pen and pencil example: the MA(1) model
	Estimation of a Random Coefficient Demand Model Revisited
	Innovation, Productivity, and Monetary Policy

	Conclusion

	Racial Screening on the Big Screen? Evidence from the Motion Picture Industry
	Introduction
	Institutional background of film production
	A model of the screening process
	Predictions for empirical work

	Data
	Facial classification
	Additional variables
	Summary statistics

	Results
	Non-parametric analysis
	OLS regressions
	Quantile regressions
	Robustness
	The white-nonwhite gap in residual variance
	Heterogeneity Analysis
	Producer analysis

	Alternative explanation: is the industry surprised?
	Conclusion

	Supplementary Materials for Chapter One
	Proof of the Theorems
	Framework for Intersection of Null Hypotheses
	Testing the Intersection of partially sharp null Hypotheses

	The Minimization-Based PIRT
	Discussion on Some Extreme Cases
	Framework to Determine the Boundary of Interference
	A Valid Procedure to Determine the Neighborhood of Interference
	Rationale for Using the FWER

	Incorporating Covariate Adjustment
	Investigation on the Power of Incorporating Covariates
	Robustness of Results to Adjustment Methods

	Algorithm for Simulation Exercise

	Supplementary Materials for Chapter Two
	Proofs for the Main Results
	Implications of Assumption 1
	Proofs for Section 2.2.1
	Proofs for Section 2.2.2

	Proofs and additional results for Section 2.3
	Additional Results for Over-Identified Models
	Proofs

	Common methods and their properties
	A survey of empirical practice
	A brief summary of the Algorithms' properties
	Revisting some empirical results

	R Code for the MA(1) Example
	Additional Simulation, Empirical Results
	Estimating an MA(1) model
	Demand for Cereal
	Impulse Response Matching
	Comparison of Rank Condition and Convexity

	Additional Material for Algorithms
	General overview of Algorithms properties
	Implementation of the algorithms


	Supplementary Materials for Chapter Three
	Proofs
	Alternative distributional assumptions
	Beta-Binomial distribution
	Pareto-Normal distribution

	Machine learning algorithm for facial classification
	Other Figures

	Bibliography
	Curriculum Vitae

