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Motivation: Integration

1. Calculate expectations: E [f (θ)] with respect to a probability distribution p

⇒
∫
f (θ)p(θ)dθ, but the integral might be intractable or hard to compute

2. Many point estimators are defined as extreme (M-estimators):

θ̂ = argminθ

n∑
i=1

m(θ, yi )

⇒ The objective function m(θ, yi ) could involve an integral over latent
variables

e.g., m(θ, yi ) = −logp(yi |θ) = −log(
∫
p(y , u|θ)du), that also could be

intractable

Approximating integrals by ”sampling instead of summing”∫
f (θ)p(θ)dθ ≈ 1

N

N∑
i=1

f (θi ), θi ∼ p

⋆ Needs to sample from p
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Motivation: Inference

1. Hypothesis testing, the p-value = P(test statistic ∈ Rejection region|H0):

Hard to compute when the distribution of the test statistic is not
normal or chi-square

⇒
∫
1{θ ∈ Rejection region}p(θ)dθ, where θ is the test statistic, and p is

the distribution
⇒ Similar to the integration issue

2. The confidence interval might be hard to compute: the variance formula is
too complex

⇒ Consider Bayesian Inference:

E.g., θ is a parameter we want to do inference on, and p is the posterior
distribution

⇐ By the Bernstein von Mises theorem, the posterior delivers frequentist
large sample inference

⋆ Also Needs to sample from p
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Importance Sampling

It might be difficult to sample p directly, but we have access to some
easy-to-sample q which does not vanish on the support of p

Then the approximation:∫
f (θ)p(θ)dθ ≡

∫
f (θ)ω(θ)q(θ)dθ ≈ 1

N

N∑
i=1

f (θi )ω(θi ), θi ∼ q

where ω(θ) = p(θ)/q(θ), called importance weight, might be more tractable

Disadvantage: Only worked for the integration issue
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The Key question

Key question: If you have a distribution p which you can only evaluate, i.e.
you know p(θ) for each θ ∈ Θ, how can you sample θ ∼ p?

For a given θ ∈ Θ, I can get the real number p(θ), e.g.
p(9.34) = 0.0124, but I want samples X1, ...,Xn ∼ p

we want to build a sampler
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Review of Metropolis-Hastings (MH)
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Acceptance Rate

The acceptance rate is:

α = min{ p(θ⋆)q(θ(i)|θ⋆)
p(θ(i))q(θ⋆|θ(i))

, 1}

Ratio of p:

1. If p(θ⋆) > p(θ(i)), more likely to accept the new draw
2. If p(θ⋆) < p(θ(i)), frequency of draw θ⋆ vs keep θ(i) is proportional to

the ratio of their evaluations

Ratio of q: corrects for the frequency of proposal

⇒ decreases/increases the acceptance probability of values which are
overproposed/underproposed.
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Main advantage of MCMC in Bayesian Inference

The acceptance rate is:

α = min{ p(θ⋆)q(θ(i)|θ⋆)
p(θ(i))q(θ⋆|θ(i))

, 1}

⋆ When conducting Bayesian inference, the normalization constant is not
required:

Recall: P(θ|data) ∝ P(data|θ)π(θ)
P(θ|data) is the posterior, also the p in MCMC; P(data|θ) is the
likelihood; π(θ) is the prior
Sometimes the normalizing constant P(data) is hard to calculate, and

it is canceled out in P(θ⋆|data)
P(θ(i)|data)

! If the prior is uniform, can sampling directly from the likelihood
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q is very Important

The acceptance rate is:

α = min{ p(θ⋆)q(θ(i)|θ⋆)
p(θ(i))q(θ⋆|θ(i))

, 1}

q needs to be chosen properly

It won’t be informative if you always reject
Extreme case, if q = p, we always accept
Evaluate q is computationally costly, so want a symmetric proposal
q(θ|θ′) = q(θ′|θ)

⇒ it vanishes from the acceptance proposal

How to choose q?
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Choice of the proposal distribution q

People often called it ”more art than science”

In particular, for common proposals of the form q(θ⋆|θ) proposing
symmetrically around the mean θ

large variance means exploring more, but a lot of rejection
⋆ low variance means a lot of acceptance but very little exploration, i.e.,

high autocorrelation and little information gain
E.g., picking the σ2 in q(θ⋆|θ) = N(θ, σ2)

What would be an appropriate number σ?
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A illustration Example

Sample from Bivariate Normal Distribution:

Y = (Y1,Y2)′ ∼ N(0,Σ)
corr(Y1,Y2) = 0.99

Proposal distribution:

q(Y ,Y ′) ∼ exp(− 1

2σ2
|Y − Y ′|2)
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Trace plot with different σ
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Burn-in period with different σ

Only the moderate variance performs the best

Roberts, Gelman, and Gilks (1997) analyzes a stylized example and show the
optimal acceptance rate in the model is about 0.234
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What if it is hard to evaluate P?

MCMC was designed for the case that we can evaluate p(θ)

Many applications doesn’t even able to evaluate p(θ), or we don’t care
about the whole sample

What if we only care about the mode argmaxθp(θ)
What if we only have access to an unbiased estimate p̂ of p
What if we can generate synthetic data from the parametrized
probability model of interest, but cannot write down the likelihood

Any modification of Metropolis-Hastings to accommodate all those
situations to maintain the core idea?
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Optimization

What if we only care about a point estimate

θmax = argmaxθp(θ)

In practice we often minimizing some objective function g(θ) ≥ 0
can be converted into the maximum of the probability above as
p(θ) ∝ exp(−g(θ))

Can grid search, take a look at {θ1, ..., θM} to calculate {p(θ1), ..., p(θM)}
and pick the max

spends a lot of time in low-density regions

We would like to keep the chain close to the optimum, How about
concentrating the distribution gradually?

⇐ “Exaggerate” the optimum once we are confident the chain is not “too far”
from the maximum, i.e., once we have plausibly reached stationary, and do
so gradually
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Simulated Annealing

Note that the target, pi (θ) ∝ p1/Ti (θ), which gradually concentrates around its
optimum as i → ∞ and Ti → 0 (called cooling schedule, often use 1/log(i))
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Performance of Simulated Annealing

In general, no guarantee of achieving global convergence. (Some convergence
results for delicate chosen Ti , but converge slower than-grid search)
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Can only approximate the target

Sometimes, evaluating the posterior or likelihood corresponding to our
economic model will require evaluating an expensive numerical integral

E.g., For the exp(−g(θ)) in the above example, g(θ) itself requires integration,
and maybe we still want the whole distribution rather than the mode

⇒ Target distribution evaluated by importance sampling

Impossible to integrate exactly
Easy to propose an unbiased estimate

More generally, given any proposed θ⋆, you don’t have π(θ⋆), but you do
have π̂(θ⋆) ≥ 0 and a guarantee that

E (π̂(θ⋆)) = π(θ⋆)
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Two options available

1. Intuitively, if the estimate π̂(θ⋆) is very accurate, the resulting draws should
approximate draws from the target distribution

⇐ This approach is called the Markov Chain Within Metropolis (MCWM)

If the approximate is not good, can we still obtain an exact sampling? Yes!

2. Idea: treat draws of the unbiased estimate as auxiliary variables in an M-H
algorithm

⇐ Captures the uncertainty in the posterior evaluation and draw from the joint
distribution

⇐ Treat the posterior as the (pseudo) marginal of a (pseudo) joint distribution
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Pseudo MCMC

Why is it drawing from the true π? Let’s look at the ”acceptance ratio” to see
what are we sampling from
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Decompose the acceptance ratio

Denote ω(k) = π̂(k)

π(θ(k))
as an auxiliary variable

⇒ π̂⋆q(θ(k)|θ⋆)
π̂(k)q(θ⋆|θ(k))

=

π̂⋆

π(θ⋆)π(θ
⋆)q(θ(k)|θ⋆)

π̂(k)

π(θ(k))
π(θ(k))q(θ⋆|θ(k)))

=
ω⋆π(θ⋆)q(θ(k)|θ⋆)

ω(k)π(θ(k))q(θ⋆|θ(k))

=
ω⋆π(θ⋆)p(ω⋆|θ⋆)

ω(k)π(θ(k))p(ω(k)|θ(k))
× p(ω(k)|θ(k))q(θ(k)|θ⋆)

p(ω⋆|θ⋆)q(θ⋆|θ(k))

Can recognize acceptance ratio for (ω, θ) with proposal p(ω⋆|θ⋆)q(θ⋆|θ(k))
and target ω⋆π(θ⋆)p(ω⋆|θ⋆)
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About the target distribution

In practice, want to draw from the θ marginal of the (ω, θ) joint

How does one do that in practice? Just ignore the ω

What are we sampling from when we marginalize ω∫
ω

ωπ(θ)p(ω|θ)dω = π(θ)

∫
ω

ωp(ω|θ)dω = π(θ)E (
π̂(θ)

π(θ)
) = π(θ)

The sampling is exact!
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Only access generative model

In economics, we often have complicated model

The likelihood would be involved
Easy to simulate but hard to write down the closed form

E.g., Structural economics models sometimes explicitly model agents as
sequentially taking decisions, as well as the distribution of innovations

It can be quite difficult, or impossible, to work out their likelihood, let
alone evaluate them
However, it can be very easy to generate from them once you have
fixed the parameters

Specially, consider test statistic/data Y generated from a generative model
g parameterized in θ and taking as argument a random element z with
known distribution:

Yθ = g(θ, z), θ ∈ Θ, z ∼ Fz

Idea: If we generat Yθ for θ close to the true parameter θ0, then Yθ and
observed Y should be close to each other since Y ∼ Yθ0
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Approximate Bayesian Computation (ABC)

This is the Bayesian equivalent of indirect inference

⇐ JJ has a nice paper to illustrate their connections
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Technical Note on ABC

Need to specify a distance between the true data Y and synthetic data Yθ

Same distances as in indirect inference can be used, e.g. difference between
moments as in the simulated method of moments for p moments m1, ...,mp:

d(Y ,Yθ) = |m1(Y )−m1(Yθ), ...,mp(Y )−mp(Yθ)|2

As in indirect inference, choosing moments/ more general auxiliary model/
pseudolikelihood can be difficult

Would prefer other nonparametric approaches (wouldn’t go into details)

Bernton et al. (2017) use Wasserstein distance as d
⇐ Combines adaptive proposal and a shrinking ϵ

Kaji et al. (2020) use a neural network classifier as d
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Other questions for MCMC

1. Rarely precise guidelines for practitioners

E.g., How to choose the stopping criteria?
⇐ Involves distance between probabilities, seems much harder than in

optimization
⇐ The number of iterations reported in the literature spans many orders

of magnitude (dozens, millions, trillions)

2. Can we use parallelization to boost the speed?

⇐ Since MCMC methods are iterative, they are not obvious to parallelize

3. How to construct the unbiased MCMC estimator without concerned about
the burn-in periods?

Most of them can be (partially) solved by introducing ”coupling”

Take a look at Pierre E. Jacob’s Website if you are interested in some
recent advance on these topics
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Thank You!
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