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Covariates in the identification assumptions

1. Unconfoundness: (Yi (1),Yi (0)) ⊥ Di |Xi ∀i for some Xi

E.g,. Cross-Sectional data
Usually omit notation i as (Y (1),Y (0)) ⊥ D|X

2. Conditional Random Assignment of IV: ((Y (1),Y (0),D1,D0)) ⊥ Z |X
81% of papers using IV included at least one covariate X (Blandhol et
al, 2022)

3. Conditional PT:
E [Yi,t=2(0)− Yi,t=1(0)|Di = 1,X ] = E [Yi,t=2(0)− Yi,t=1(0)|Di = 0,X ]

E.g,. Panel data
Allow for covariate-specific trends
Not necessarily weaker than canonical PT

? How to handle these covariates in implementation?

The Rest of the talk assumed common support: For some ϵ > 0,
ϵ < P(D = 1|X ) < 1− ϵ a.s.
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Covariates and Unconfoundness

Parameter of interest: ATE

= E (Y (1)− Y (0)) = EX (E (Y (1)− Y (0)|X )) ≡ EX (CATE (x))

= EX (E (Y (1)|D = 1,X )− E (Y (0)|D = 0,X )) (Unconfoundness)

= EX (E (Y |D = 1,X )− E (Y |D = 0,X )) (Observable in practice)

What if we ran a simple regression: Y = βD + γX + u?

Denote L[Di |Xi ] as the best linear predictor of D, D̃i = Di − L(Di |Xi )

⇒ E (D̃i ) = 0,E (D̃iXi ) = 0

By Frisch-Waugh-Lovell theorem, or called Regression anatomy formula in
MHE:

⇒
β =

E (Yi D̃i )

E (D̃2
i )
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Decompose the OLS coefficient

β =
E (Yi D̃i )

E (D̃2
i )

=
ED,X (E (Yi |Di ,Xi )D̃i )

E (D̃2
i )

(Law of Iterated Expectation)

=
ED,X (E (DiYi (1) + (1− Di )Yi (0)|Di ,Xi )D̃i )

E (D̃2
i )

(Definition of Yi )

=
EX (DiCATE (X )D̃i ))

E (D̃2
i )

+
EX (E (Yi (0)|Xi )D̃i )

E (D̃2
i )

(Unconfoundness)

≡ EX [ω(Xi )CATE (Xi )] + δ

ω(Xi ) ≡ Di (Di−L(Di |Xi ))
E((Di−L(Di |Xi ))2)

⇒ By E (D̃iXi ) = 0, E [ω(Xi )] = 1

δ ≡ E(E(Yi (0)|Xi )D̃i )

E(D̃2
i )
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How to interpret the OLS coefficient?

β = E [ω(Xi )CATE (Xi )] + δ

1. If E (Di |Xi ) = L[Di |Xi ] ⇒ E (D̃i |Xi ) = 0 ⇒ β = E [ω(Xi )CATE (Xi )]

Can write ω(Xi ) =
Var(Di |Xi=x)
E(Var(Di |Xi ))

≥ 0

β = ATE when CATE (Xi ) and ω(Xi ) are uncorrelated (e.g,. either of
them are constant)
More weights on Xi that has a lot of variation on Di

⇒ Not the desired weight for ATE

2. Typically E (Di |Xi ) ̸= L[Di |Xi ]

⇒ β no longer a convex weighted average of CATE (Xi )

Moreover, weight can be negative when L(Di |Xi ) > 1

⋆ In general, either cases would lead to β ̸= ATE
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Covariates and IV

Parameter of interest: LATE; Denote compliers as C:

= E (Y (1)− Y (0)|C ) = EX |C (E (Y (1)− Y (0)|C ,X )) ≡ EX |C (LATE (X ))

= EX |C (
E(Y |X ,Z=1)−E(Y |X ,Z=0)
E(D|X ,Z=1)−E(D|X ,Z=0) ) (Similar procedure as the no covariate case)

Using the fact that P(C |X ) = E (D|X ,Z = 1)− E (D|X ,Z = 0)
(Frolich, 2007)

= EX (E(Y |X ,Z=1)−E(Y |X ,Z=0))
EX (E(D|X ,Z=1)−E(D|X ,Z=0)) (Observable in practice)

Same as Wald estimator if no covariates

Blandhol et al (2022): 2SLS with covariates doesn’t give us LATE

Discussed last time
Similar intuition to the OLS case above
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Covariates and Conditional PT

Parameter of interest: ATT

= E (Yt=2(1)− Yt=2(0)|D = 1) = EX |D=1(E (Yt=2(1)− Yt=2(0)|D = 1,X )) ≡ EX |D=1(ATT (X ))

= EX |D=1(E (Yt=2(1)− Yt=1(0)|D = 1,X )− E (Yt=2(0)− Yt=1(0)|D = 0,X )) (By conditional PT)

= E [Yt=2 − Yt=1|D = 1]− EX |D=1(E [Yt=2 − Yt=1|D = 0,X ]) (Observable in practice)

In practice, people often use TWFE with covariates

Causing huge bias if potential outcome and treatment assignments are
related to covariates
Simulation exercise can be found in the previous slides
The weighted sum formula like the OLS case can be found in Lin and
Zhang (Economics Letters, 2022)
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Choice of covariates in Conditional PT

For panel data, a more tricky issue is the choice of X : Xi or
{Xit , t = 1, ...,T}?

Xi : Conditional on pre-treatment covariates only

Safe choice, but might not be enough for PT to hold

{Xit , t = 1, ...,T}: Conditional on time-varying covariates in all time periods

Need to make sure the temporal change of Xi,t is not caused by the
policy
Post-treatment bias: covariates measured after treatment may obscure
the causal effect (Caetano et al, 2022)

In general, adding more controls need not bring you closer to identification!

See MHE discussion of “bad controls,” or more sophisticated
discussions of “collider bias” from the DAG literature (Cinelli, Forney,
and Pearl, 2022)
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Summary of the problem

1. Linear regressions implicitly restrict the effects to be homogeneous

⇒ Constant effect is a strong assumption; we’d like to avoid it when possible

Seems likely that effects vary across both observables & unobservables
For binary Yi (or other limited support), the constant effect is
impossible

2. All the parameters of interest are related to the conditional average potential
outcome E (Y |D = 1,X )− E (Y |D = 0,X )

In LATE, ”D” is the IV Z , ”Y ” can be either Y or D
In ATT of DID, ”Y ” is Yt=2 − Yt=1, and we also need to take care of
EX |D=1

How to deal with them in practice?
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How about matching using covariates?

How to estimate E (Y |D = 1,X )− E (Y |D = 0,X )?

1. Match treated and control observations with the same value of Xi

2. Estimate E [Yi |Di = 1,Xi = x ]− E [Yi |Di = 0,Xi = x ] for each x
3. Average these estimates together by the marginal distribution of Xi

Simple? Matching can be tricky when Xi takes on many values / has many
rows (The Curse of Dimensionality)

Denote the dimension of X as k

Larger k ⇒ more plausible identification

⇒ Larger matching discrepancies due to limited sample size
E.g,. Subclassification: divide each covariates into 2 coarse categories (e.g.,

age would be “young” or “old”, and income would be “low” or “high”)
Number of subclassification cells is 2k . With k = 10, we obtain
210 = 1024, not enough observations in each cell

⇒ Estimators for E [Y |D = 0,X ] might not be able to converge

Smaller k ⇒ each ”cells” are “too coarse”, make identification problematic

What to do next?
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Solution 1: Regression-adjusted estimators

How about estimate E (Y |D = 1,X ) and E (Y |D = 0,X ) separately?

1. Estimate E [Y |X ,D = 1] and E [Y |X ,D = 0] using your favorite
method. Denote these by µ̂1,n(Xi ) and µ̂0,n(Xi ), respectively

2. Use estimated regressions to produce analog estimators:
ˆATE n = 1

nΣ
n
i=1(µ̂1,n(Xi )− µ̂0,n(Xi )); ˆATT n = 1

n1
Σn

i=1Di (Yi − µ̂0,n(Xi ))

Rely on researchers’ ability to model the potential outcome

In the ATT case, basically impute Y (0) for the treated groups using
the model estimated from the control groups
People often Use linear regression model, but other semi-parametric or
non-parametric models can be used as well
See a nice discussion in Wooldridge (2010) for the choice of models
(Quasi-MLE has been mentioned a lot)

Similar idea for DID and LATE, Take DID as an example:

ATT = E [Yt=2 − Yt=1|D = 1]− EX |D=1(µ̂
D=0
t=2 (Xi )− µ̂D=0

t=1 (Xi ))
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Solution 2: Using Propensity Scores

Rather than matching on Xi , it’s enough to match on the scalar propensity
score p(Xi ) = Pr(Di = 1|Xi ) (Rosenbaum & Rubin, 1983)

Prop: (Yi (0),Yi (1)) ⊥ Di |Xi implies (Yi (0),Yi (1)) ⊥ Di |p(Xi )

Proof: Pr(Di = 1|p(Xi ),Yi (0),Yi (1)) = E [Di |p(Xi ),Yi (0),Yi (1)]
= E [E [Di |Xi , p(Xi ),Yi (0),Yi (1)]|p(Xi ),Yi (0),Yi (1)]
= E [E [Di |Xi ]|p(Xi ),Yi (0),Yi (1)] (By Unconfoundness)
= E [p(Xi )|p(Xi ),Yi (0),Yi (1)]
= p(Xi ) = Pr(Di = 1|p(Xi ))

This suggests a two-step procedure to estimate causal effects under the
unconfoundedness setup:

1. Estimate the propensity score p(X ), using e.g. logit regression
2. Conduct matching or subclassification on the estimated propensity

score

⋆ Substantial dimension reduction (as long as we know p(X ))

Rely on researchers’ ability to model the propensity score
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Inverse Probability Weighting Estimators

Can also weight inversely by p(Xi )

Prop: For any function ϕ, E [ϕ(Y (1))−ϕ(Y (0))] = E [ D
p(X )ϕ(Y )]−E [ 1−D

1−p(X )ϕ(Y )]

Proof: Let τϕ(X ) ≡ E [ D
p(X )ϕ(Y )|X ]− E [ 1−D

1−p(X )ϕ(Y )|X ]

= E [ 1
p(X )ϕ(Y )|X ,D = 1]p(X )− E [ 1

1−p(X )ϕ(Y )|X ,D = 0](1− p(X ))

(By definition of Expectation)
= E [ϕ(Y )|X ,D = 1]− E [ϕ(Y )|X ,D = 0]
= E [ϕ(Y (1))|X ,D = 1]− E [ϕ(Y (0))|X ,D = 0]
= E [ϕ(Y (1))− ϕ(Y (0))|X ] (By unconfoundness)

Comparison between propensity score matching v.s. weighting:

Matching method tends to have lower bias but higher variance
Weighting method tends to have higher bias but lower variance
No one dominates the other (See Busso, DiNardo, and McCrary (2009,
2014))
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Inverse Probability Weighting for ATT

Prop: E [ϕ(Y (1))− ϕ(Y (0))|D = 1] = 1
P(D=1) (E [Dϕ(Y )]− E [p(X ) 1−D

1−p(X )ϕ(Y )])

Proof: E (τϕ(X )|D = 1) =
∫
τϕ(x)F (dx |D = 1)

=
∫
τϕ(x)P(D=1|X=x)F (dx)∫

P(D=1|X=x)F (dx)
(By Bayes’ Theorem)

=
∫
τϕ(x)p(x)F (dx)

P(D=1)

= E(τϕ(X )p(X ))
P(D=1)

Might prefer normalized weights, and replace P(D = 1) = E [p(X ) 1−D
1−p(X ) ]

It is often called Hájek (1971)-type estimators can be more stable

Similar for DID and LATE, still take DID as an example:

ATT = E [(
D

E (D)
−

p(X ) 1−D
1−p(X )

E (p(X ) 1−D
1−p(X ) )

)(Yt=2 − Yt=1)]
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Estimate Propensity score in Practice

1. Try to approximate the treatment assignment process as closely as possible

E.g., Logit/Probit, mostly works fine
See Abadie and Imbens (2016) for matching and Hirano, Imbens, and
Ridder (2003) for weighting

Also a large/growing ML literature to flexibly model the propensity score:

i. Bayesian Additive Regression Trees (BART, Hill et al., 2011)

BART is a sum-of-trees-approach that uses a Bayesian prior to prevent
overfitting while allowing the model to be very flexible

ii. SuperLearner: A stacking method that allows you to supply many different
machine learning methods (Pirrachio et al., 2015)

Either picks the best one or takes an optimally weighted combination
of them

JJ will talk about it later

Not all ML methods can work with propensity score weighting: irregular
functional form would make inference very hard
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Balance weighting method

The whole idea of propensity score relies on the finding that balancing on a
well-formed propensity score balances all pre-treatment covariates fully

In practice, even if we tried the most flexible model, there is almost no
hope of correctly modeling the treatment process to obtain propensity
scores

2. Try to obtain propensity scores that yield covariate balance

Imai and Ratkovic (2014, JRSS): Estimate γ use a logit model by restricting:

E (X ′) = E (
D

p(Xγ)
X ′) = E (

1− D

1− p(Xγ)
X ′)

Ensures the weighted means of all covariates are the same in control
and treated subsamples
With misspecification, tends to work better than MLE-based weights
User-written Stata command available: psweight

⋆ Regardless of which approach you choose, you should assess balance on your
covariates
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Challenge 1: Misspecification

Regression based treatment effects estimators requires correctly specified
regression model for the outcome of interest

Inverse probability weighting based treatment effects estimators requires
correctly specified propensity score model for p(X )

Although in practice, both models are likely to be misspecified, anything we
can do to make us feel more comfortable?

⇒ Doubly robust (DR) estimator: combines the regression and the IPW
approach

Also called augmented inverse probability weighting
the estimator will be consistent if either putative regression or
propensity score model is correctly specified

Even though both model misspecified, DR is more efficient as long as the
overlap condition holds

See Busso, DiNardo, and McCrary (2009, 2014) for simulation results
Sant’Anna and Zhao (2020) also shown that DR for did is
”semi-parametrically efficient”(confidence interval are tighter)
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Doubly Robust estimation

ATE:
1

n

n∑
i=1

[
Di

p̂n(Xi )
Yi + (1− Di

p̂n(Xi )
)µ̂1,n(Xi )]

−1

n

n∑
j=1

[
1− Dj

1− p̂n(Xj)
Yj + (1− 1− Dj

1− p̂n(Xj)
)µ̂0,n(Xj)]

Taking the IPW estimator and “augmenting” it by a second term
When Yi = µ̂n(Xi ), back to the regression-based method
When p̂n(Xi ) = p(Xi ), E (

Di

p̂n(Xi )
) = 1, back to the IPW estimator

Functional form for LATE and DID are following the same idea

DID package: DRDID

LATE: STATA command drlate is available
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Challenge 2: Limited Overlap

The ATE is only identified when p(Xi ) is bounded away from zero and one

⇐ Intuitively, can’t identify effects at Xi where Di = 0 or Di = 1 always

ATE estimators are likely to be very noisy of p(Xi ) is ever near zero or one

⇐ Intuitively, need a lot of data to estimate effects at such Xi

The finite-sample performance of ATE estimators under limited overlap can
be improved by “trimming” propensity scores near 0 and 1

⇐ Trimming in large samples changes the estimand, from ATE to a
weighted-average CATE (Xi ) among Xi with non-trimmed p(Xi )
(Crump et al. 2009)
Without trimming, all matching methods have bad performances
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Beyond Matching

Even without the practical challenge above, in practice P-score
matching/weighting can be a little involved

How to conduct inference?
Some packages exist (e.g. teffects in Stata), but results highly depends
on the method you choose, even if overlap is decent (recall your
experience in the problem set)

What else can we try?

Recall the key issue in linear regression is L(D|X ) ̸= E (D|X )

What if we try regression Y = βD + g(X ) + u, where g(X ) is a
nonparametric function of X?

L(D|g(X )) ≈ E (D|X )? Then we might at least have a convex combination
of CATE

⇒ One of the motivation for the usage of Semiparametric methods and Double
Machine Learning
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Thank You!
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